Search Results

You are looking at 51 - 60 of 333 items for :

  • "identification" x
  • Physical Education and Coaching x
Clear All
Restricted access

Scott R. Brown, Matt Brughelli and Lee A. Bridgeman

Context:

Muscle imbalances aid in the identification of athletes at risk for lower-extremity injury. Little is known regarding the influence that leg preference or playing position may have on lower-extremity muscle strength and asymmetry.

Purpose:

To investigate lower-extremity strength profiles in rugby union athletes and compare isokinetic knee- and hip-strength variables between legs and positions.

Methods:

Thirty male academy rugby union athletes, separated into forwards (n = 15) and backs (n = 15), participated in this cross-sectional analysis. Isokinetic dynamometry was used to evaluate peak torque, angle of peak torque, and strength ratios of the preferred and nonpreferred legs during seated knee extension/flexion and supine hip extension/flexion at 60°/s.

Results:

Backs were older (ES = 1.6) but smaller in stature (ES = –0.47) and body mass (ES = –1.3) than the forwards. The nonpreferred leg was weaker than the preferred leg for forwards during extension (ES = –0.37) and flexion (ES = –0.21) actions and for backs during extension (ES = –0.28) actions. Backs were weaker at the knee than forwards in the preferred leg during extension (ES = –0.50) and flexion (ES = –0.66) actions. No differences were observed in strength ratios between legs or positions. Backs produced peak torque at longer muscle lengths in both legs at the knee (ES = –0.93 to –0.94) and hip (ES = –0.84 to –1.17) than the forwards.

Conclusions:

In this sample of male academy rugby union athletes, the preferred leg and forwards displayed superior strength compared with the nonpreferred leg and backs. These findings highlight the importance of individualized athletic assessments to detect crucial strength differences in male rugby union athletes.

Restricted access

Thiago Oliveira Borges, Ben Dascombe, Nicola Bullock and Aaron J. Coutts

This study aimed to profile the physiological characteristics of junior sprint kayak athletes (n = 21, VO2max 4.1 ± 0.7 L/min, training experience 2.7 ± 1.2 y) and to establish the relationship between physiological variables (VO2max, VO2 kinetics, muscle-oxygen kinetics, paddling efficiency) and sprint kayak performance. VO2max, power at VO2max, power:weight ratio, paddling efficiency, VO2 at lactate threshold, and whole-body and muscle oxygen kinetics were determined on a kayak ergometer in the laboratory. Separately, on-water time trials (TT) were completed over 200 m and 1000 m. Large to nearly perfect (−.5 to −.9) inverse relationships were found between the physiological variables and on-water TT performance across both distances. Paddling efficiency and lactate threshold shared moderate to very large correlations (−.4 to −.7) with 200- and 1000-m performance. In addition, trivial to large correlations (−.11 to −.5) were observed between muscle-oxygenation parameters, muscle and whole-body oxygen kinetics, and performance. Multiple regression showed that 88% of the unadjusted variance for the 200-m TT performance was explained by VO2max, peripheral muscle deoxygenation, and maximal aerobic power (P < .001), whereas 85% of the unadjusted variance in 1000-m TT performance was explained by VO2max and deoxyhemoglobin (P < .001). The current findings show that well-trained junior sprint kayak athletes possess a high level of relative aerobic fitness and highlight the importance of the peripheral muscle metabolism for sprint kayak performance, particularly in 200-m races, where finalists and nonfinalists are separated by very small margins. Such data highlight the relative aerobic-fitness variables that can be used as benchmarks for talent-identification programs or monitoring longitudinal athlete development. However, such approaches need further investigation.

Restricted access

Dionne A. Noordhof, Carl Foster, Marco J.M. Hoozemans and Jos J. de Koning

A meaningful association between changes (Δ) in push-off angle or effectiveness (e) and changes in skating velocity (v) has been found during 5000-m races, although no significant association was found between changes in knee (θ0) and trunk angle (θ1) and Δv. It might be that speed skating event, sex, and performance level influence these associations.

Purpose:

To study the effect of skating event, sex, and performance level on the association between Δe and Δv and between Δθ0 and Δθ1 and Δv.

Methods:

Video recordings were made from frontal (e) and sagittal views (θ0 and θ1) during 1500- and 5000-m men’s and women’s World Cup races. Radio-frequency identification tags provided data of v.

Results:

Skating event influenced the association between Δe and Δv, which resulted in a significant association between Δe and Δv for the 5000-m (β = –0.069, 95% confidence interval [–0.11, –0.030]) but not for the 1500-m (β = –0.011 [–0.032, 0.010]). The association between Δθ0 and Δθ1 and Δv was not significantly influenced by skating event. Sex and performance level did not substantially affect the association between Δe and Δv and between Δθ0 and Δθ1 and Δv.

Conclusions:

Skating event significantly influenced the association between Δe and Δv; a 1° change in e results in a 0.011-m/s decrease in v during the 1500-m and a 0.069-m/s decrease in v during the 5000-m. Thus, it seems especially important to maintain a small e during the 5000-m.

Restricted access

Nicola Furlan, Mark Waldron, Kathleen Shorter, Tim J. Gabbett, John Mitchell, Edward Fitzgerald, Mark A. Osborne and Adrian J. Gray

Purpose:

To investigate temporal variation in running intensity across and within halves and evaluate the agreement between match-analysis indices used to identify fluctuations in running intensity in rugby sevens.

Methods:

Data from a 15-Hz global positioning system (GPS) were collected from 12 elite rugby sevens players during the IRB World Sevens Series (N = 21 full games). Kinematic (eg, relative distance [RD]) and energetic (eg, metabolic power [MP]) match-analysis indices were determined from velocity–time curves and used to investigate between-halves variations. Mean MP and RD were used to identify peak 2-minute periods of play. Adjacent 2-minute periods (prepeak and postpeak) were compared with peak periods to identify changes in intensity. MP and RD were expressed relative to maximal oxygen uptake (V̇O2max) and speed at V̇O2max, respectively, and compared in their ability to describe the intensity of peak periods and their temporal occurrence.

Results:

Small to moderate reductions were present for kinematic (RD; 8.9%) and energetic (MP; 6%) indices between halves. Peak periods (RD = 130 m/min, MP =13 W/kg) were higher (P < .001) than the match average (RD = 94 m/min, MP = 9.5 W/kg) and the prepeak and postpeak periods (P < .001). RD underestimated the intensity of peak periods compared with MP (bias 16%, limits of agreement [LoA] ± 6%). Peak periods identified by RD and MP were temporally dissociated (bias 21 s, LoA ± 212 s).

Conclusions:

The findings suggest that running intensity varies between and within halves; however, the index used will influence both the magnitude and the temporal identification of peak periods.

Restricted access

Dionne A. Noordhof, Carl Foster, Marco J.M. Hoozemans and Jos J. de Koning

Speed skating posture, or technique, is characterized by the push-off angle or effectiveness (e), determined as the angle between the push-off leg and the ice; the preextension knee angle (θ 0); and the trunk angle (θ 1). Together with muscle-power output and environmental conditions, skating posture, or technique, determines velocity (v).

Purpose:

To gain insight into technical variables that are important to skate efficiently and perform well, e, θ 0, θ 1, and skating v were determined every lap during a 5000-m World Cup. Second, the authors evaluated if changes (Δ) in e, θ 0, and θ 1 are associated with Δv.

Methods:

One camera filmed the skaters from a frontal view, from which e was determined. Another camera filmed the skaters from a sagittal view, from which θ 0 and θ 1 were determined. Radio-frequency identification tags around the ankles of the skaters measured v.

Results:

During the race, e progressively increased and v progressively decreased, while θ 0 and θ 1 showed a less consistent pattern of change. Generalized estimating equations showed that Δe is significantly associated with Δv over the midsection of the race (β = −0.10, P < .001) and that Δθ 0 and Δθ 1 are not significantly associated with Δv.

Conclusions:

The decrease in skating v over the race is not due to increases in power losses to air friction, as knee and trunk angle were not significantly associated with changes in velocity. The decrease in velocity can be partly ascribed to the decrease in effectiveness, which reflects a decrease in power production associated with fatigue.

Restricted access

Knud Ryom, Mads Ravn, Rune Düring and Kristoffer Henriksen

Both talent identification (TI) and talent development (TD) play a vital role in the pursuit of excellence in football ( Reilly, Williams, Nevill, & Franks, 2000 ). Football represents one of the most competitive and complex sports when it comes to attaining expertise ( Aguiar, Botelho, Lago, Maças

Restricted access

Nicola Taylor, David Giles, Micha Panáčková, James Mitchell, Joel Chidley and Nick Draper

performance at a global level. The CM-PAT scale is a valuable tool for coaches and researchers that allows for the identification of coachable characteristics that could complement existing measures such as GE and climbing time. However, several limitations should be acknowledged. First, the present study has

Open access

Shona L. Halson, Alan G. Hahn and Aaron J. Coutts

measured variables. By contrast, field testing can be conducted daily, permitting much greater resolution in the detection of trends and easier identification of abnormal results. Even where data collected in training and competition environments are slightly less controllable than those obtained in the

Open access

David Pyne

, authors should avoid the common temptation to revert to individual responders simply because the main effects are unclear. Sport scientists are interested in the mechanisms of effects, as well as their identification and description. The extent to which a mechanistic variable mediates an effect through

Open access

Sophia Nimphius

of female athletes. Note I.  Research in exercise and sport science uses the terms gender and sex . For this editorial, the term gender was used in alignment with the International Olympic Committee concerning gender identification and sport participation. Future research should consider the