Search Results

You are looking at 51 - 60 of 225 items for :

  • "muscle damage" x
Clear All
Restricted access

Jessica Hill, Glyn Howatson, Ken van Someren, David Gaze, Hayley Legg, Jack Lineham and Charles Pedlar

Compression garments are frequently used to facilitate recovery from strenuous exercise.

Purpose:

To identify the effects of 2 different grades of compression garment on recovery indices after strenuous exercise.

Methods:

Forty-five recreationally active participants (n = 26 male and n = 19 female) completed an eccentric-exercise protocol consisting of 100 drop jumps, after which they were matched for body mass and randomly but equally assigned to a high-compression pressure (HI) group, a low-compression pressure (LOW) group, or a sham ultrasound group (SHAM). Participants in the HI and LOW groups wore the garments for 72 h postexercise; participants in the SHAM group received a single treatment of 10-min sham ultrasound. Measures of perceived muscle soreness, maximal voluntary contraction (MVC), countermovement-jump height (CMJ), creatine kinase (CK), C-reactive protein (CRP), and myoglobin (Mb) were assessed before the exercise protocol and again at 1, 24, 48, and 72 h postexercise. Data were analyzed using a repeated-measures ANOVA.

Results:

Recovery of MVC and CMJ was significantly improved with the HI compression garment (P < .05). A significant time-by-treatment interaction was also observed for jump height at 24 h postexercise (P < .05). No significant differences were observed for parameters of soreness and plasma CK, CRP, and Mb.

Conclusions:

The pressures exerted by a compression garment affect recovery after exercise-induced muscle damage, with higher pressure improving recovery of muscle function.

Restricted access

William Abbott, Adam Brett, Emma Cockburn and Tom Clifford

competitive matches. The functional deficits outlined above are ostensibly due to muscle damage; a consequence of the high strain of the muscle contractions and eccentric activity associated with soccer. 1 , 2 Attempts to alleviate their symptoms often focus on mitigating the initial muscle damage or trying

Restricted access

Will Abbott, Callum Brashill, Adam Brett and Tom Clifford

or reduce muscle pain—another common symptom of exercise-induced muscle damage (EIMD)—following strenuous, high-intensity exercise. 1 There is, however, a growing body of evidence to suggest that functional food–based supplements, that is, supplements derived from foods containing anti

Restricted access

Javier T. Gonzalez, Martin J. Barwood, Stuart Goodall, Kevin Thomas and Glyn Howatson

Unaccustomed eccentric exercise using large muscle groups elicits soreness, decrements in physical function and impairs markers of whole-body insulin sensitivity; although these effects are attenuated with a repeated exposure. Eccentric exercise of a small muscle group (elbow flexors) displays similar soreness and damage profiles in response to repeated exposure. However, it is unknown whether damage to small muscle groups impacts upon whole-body insulin sensitivity. This pilot investigation aimed to characterize whole-body insulin sensitivity in response to repeated bouts of eccentric exercise of the elbow flexors. Nine healthy males completed two bouts of eccentric exercise separated by 2 weeks. Insulin resistance (updated homeostasis model of insulin resistance, HOMA2-IR) and muscle damage profiles (soreness and physical function) were assessed before, and 48 h after exercise. Matsuda insulin sensitivity indices (ISIMatsuda) were also determined in 6 participants at the same time points as HOMA2-IR. Soreness was elevated, and physical function impaired, by both bouts of exercise (both p < .05) but to a lesser extent following bout 2 (time x bout interaction, p < .05). Eccentric exercise decreased ISIMatsuda after the first but not the second bout of eccentric exercise (time x bout interaction p < .05). Eccentric exercise performed with an isolated upper limb impairs whole-body insulin sensitivity after the first, but not the second, bout.

Restricted access

Mette Hansen, Jens Bangsbo, Jørgen Jensen, Bo Martin Bibby and Klavs Madsen

This trial aimed to examine the effect of whey protein hydrolysate intake before and after exercise sessions on endurance performance and recovery in elite orienteers during a training camp. Eighteen elite orienteers participated in a randomized controlled intervention trial during a 1-week training camp (13 exercise sessions). Half of the runners (PRO-CHO) ingested a protein drink before (0.3 g kg−1) and a protein-carbohydrate drink after (0.3 g protein kg−1 and 1 g carbohydrate kg−1) each exercise session. The others ingested energy and timematched carbohydrate drinks (CHO). A 4-km run-test with 20 control points was performed before and on the last day of the intervention. Blood and saliva were obtained in the mornings, before and after run-tests, and after the last training session. During the intervention, questionnaires were fulfilled regarding psychological sense of performance capacity and motivation. PRO-CHO and not CHO improved performance in the 4-km run-test (interaction p < .05). An increase in serum creatine kinase was observed during the week, which was greater in CHO than PRO-CHO (interactionp < .01). Lactate dehydrogenase (p < .001) and cortisol (p = .057) increased during the week, but the change did not differ between groups. Reduction in sense of performance capacity during the intervention was greater in CHO (p < .05) than PRO-CHO. In conclusion, ingestion of whey protein hydrolysate before and after each exercise session improves performance and reduces markers of muscle damage during a strenuous 1-week training camp. The results indicate that protein supplementation in conjunction with each exercise session facilitates the recovery from strenuous training in elite orienteers.

Restricted access

Zeynep Hazar Kanik, Seyit Citaker, Canan Yilmaz Demirtas, Neslihan Celik Bukan, Bulent Celik and Gurkan Gunaydin

spasms, connective tissue damage, muscle damage, inflammation, and enzyme efflux theories. 1 , 2 However, an integration of 3 or more theories is likely to explain muscle soreness. Symptoms of DOMS include muscle soreness, swelling, reduction in range of motion, maximal strength and performance, and

Restricted access

Thilo Hotfiel, Marion Kellermann, Bernd Swoboda, Dane Wildner, Tobias Golditz, Casper Grim, Martin Raithel, Michael Uder and Rafael Heiss

-weighted sequence images, according to the anatomic margin of each muscle (medial GM, lateral GM, and SM) and copying those over the T2-turbo inversion recovery magnitude and T2-mapping sequence images. To graduate the exercise-induced muscle damage, a modification of the Peetrons’ classification was used

Restricted access

Matthew R. Nelson, Robert K. Conlee and Allen C. Parcell

In Delayed Onset Muscle Soreness (DOMS), muscles become sore 24 to 48 hours after eccentric and unaccustomed activity. Fiber stiffness, due to decreased muscle glycogen, may predispose muscle to greater damage during eccentric exercise. This study sought to determine if inadequate carbohydrate intake following a protocol to decrease muscle glycogen would increase DOMS after 15 min of downhill running. Thirty-three male subjects (age, 18–35 years) were randomized into 3 groups for testing over a 7-day period. The depletion (DEP) group (n = 12) underwent a glycogen depletion protocol prior to a 15-min downhill run designed to induce DOMS. The repletion (FED) group (n = 10) underwent a glycogen depletion protocol followed by a carbohydrate repletion protocol (>80% CHO) prior to downhill running. The third (ECC) group (n = 11) performed only the downhill running protocol. Subjective muscle soreness, isometric force production, relaxed knee angle, and thigh circumference were measured pretreatment and on days 1, 2, 3, 4, and 6 post treatment. Subjective muscle soreness for all groups increased from 0 cm pretreatment to 3.05 ± 0.72 cm (on a 10-cm scale) on day 1 post treatment (p < .05). All groups were significantly different from baseline measurements until day 4 post treatment. Each group experienced a decline in isometric force from 281 ± 45 N pre-to 253 ± 13 N on day 1 post treatment (p < .05). The decrease in isometric force persisted in all groups for 4 days post treatment. Increases in thigh circumference and relaxed knee angle elevations in all 3 groups were statistically different (p < .05) from pretreatment until day 4. No differences were noted between groups for any of the parameters examined. In the current study, 15 min of downhill running is sufficient to cause DOMS with the associated functional and morphological changes; however, inadequate carbohydrate intake after a glycogen depleting exercise does not appear to exacerbate DOMS and the associated symptoms.

Restricted access

Mindy Millard-Stafford, Gordon L. Warren, Leah Moore Thomas, J. Andrew Doyle, Teresa Snow and Kristen Hitchcock

Post-exercise nutrition is critical to facilitate recovery from training. To determine if added protein (P) or increased carbohydrate (CHO) differentially improves recovery, eight runners ingested: 6% CHO (CHO6), 8% CHO + 2% protein (CHOP), and isocaloric 10% CHO (CHO10) following a 21-km run plus treadmill run to fatigue (RTF) at 90% VO2max. RTF was repeated after 2 h recovery. After 24 h, a 5 km time trial was performed. Insulin and blood glucose were higher (P < 0.05) following CHO10 compared to CHO-P and CHO6, but did not affect improvement from the first to second RTF (29.6% ± 6, 40.5% ± 8.8, 40.5% ± 14.5) or 5 km time (1100 ± 36.3, 1110 ± 37.3, 1118 ± 36.5 s). CK was not different, but perceived soreness with CHO-P (2.1 ± 0.5) was lower than CHO10 (5.2 ± 0.7). Additional calories from CHO or P above that provided in sports drinks does not improve subsequent performance after recovery; but less soreness suggests benefits with CHO-P.

Restricted access

Craig Twist and Jamie Highton

Rugby league is a contact team sport performed at an average intensity similar to that of other team sports (~70–80% VO2max), made up of unsystematic movements of varying type, duration, and frequency. The high number of collisions, repeated eccentric muscle contractions associated with accelerating and decelerating, and prolonged aerobic nature of rugby league matches result in the development of fatigue in the days after exercise. Monitoring the presence and magnitude of this fatigue to maximize performance and training adaptation is an important consideration for applied sports scientists. Several methods have been proposed to measure the magnitude of fatigue in athletes. Perceptual measures (eg, questionnaires) are easy to employ and are sensitive to changes in performance. However, the subjective nature of such measures should be considered. Blood biochemical markers of fatigue may provide a more objective measure of homeostatic disturbances associated with fatigue; however, the cost, level of expertise required, and high degree of variability of many of these measures often preclude them from being used in the applied setting. Accordingly, simple measure of muscle function (eg, jump height) and simulated performance offer the most practical and appropriate method of determining the extent of fatigue experienced by rugby league players. A meaningful change in each measure of fatigue for the monitoring of players can be easily determined, provided that the reliability of the measure is known. Multiplying the coefficient of variation by 0.3, 0.9, and 1.6 can be used to determine a small, moderate, and large change, respectively.