Search Results

You are looking at 51 - 60 of 159 items for :

  • "post-exercise" x
  • Sport and Exercise Science/Kinesiology x
Clear All
Restricted access

Mindy Millard-Stafford, Gordon L. Warren, Leah Moore Thomas, J. Andrew Doyle, Teresa Snow and Kristen Hitchcock

Post-exercise nutrition is critical to facilitate recovery from training. To determine if added protein (P) or increased carbohydrate (CHO) differentially improves recovery, eight runners ingested: 6% CHO (CHO6), 8% CHO + 2% protein (CHOP), and isocaloric 10% CHO (CHO10) following a 21-km run plus treadmill run to fatigue (RTF) at 90% VO2max. RTF was repeated after 2 h recovery. After 24 h, a 5 km time trial was performed. Insulin and blood glucose were higher (P < 0.05) following CHO10 compared to CHO-P and CHO6, but did not affect improvement from the first to second RTF (29.6% ± 6, 40.5% ± 8.8, 40.5% ± 14.5) or 5 km time (1100 ± 36.3, 1110 ± 37.3, 1118 ± 36.5 s). CK was not different, but perceived soreness with CHO-P (2.1 ± 0.5) was lower than CHO10 (5.2 ± 0.7). Additional calories from CHO or P above that provided in sports drinks does not improve subsequent performance after recovery; but less soreness suggests benefits with CHO-P.

Restricted access

Stephen Hill, Wesley Box and Robert A. DiSilvestro

Lipid peroxides can be both a product and an initiator of oxidant stress. Conceivably, exercise can either increase concentrations of lipid peroxides (by causing oxidant stress), or decrease them (by accelerating peroxide breakdown). The net effect could depend on exercise intensity and nutritional intake of antioxidants. The present study examined the response of serum lipid peroxides to the combination of moderate intensity, weight resistance exercise plus intake of soy protein, a source of antioxidant phytochemicals. Recreationally trained, young adult men (N = 18) consumed soy protein or antioxidant-poor whey protein for 4 weeks (40 g protein/d) before a session of moderate intensity, weight resistance exercise. In the soy group, exercise decreased values for serum lipid peroxides at 5 min, 3 h, and 24 h post-exercise. The whey group showed the depression only at 24 h. In both the soy and whey groups, a small rise was seen for interleukin-8, which is consistent with the idea that the exercise session induced a moderate muscle stress. In summary, a moderate intensity, weight resistance exercise session, despite inducing mild inflammation, depressed plasma serum peroxide values, especially when combined with 4 weeks of soy consumption.

Restricted access

Glen Davison and Michael Gleeson

The aim of the present study was to investigate the effect of vitamin C with or without carbohydrate consumed acutely in beverages before and during prolonged cycling on immunoendocrine responses. In a single blind, randomized manner six healthy, moderately trained males exercised for 2.5 h at 60% VO2max and consumed either placebo (PLA), carbohydrate (CHO, 6% w/v), vitamin C (VC, 0.15% w/v) or CHO+VC beverages before and during the bouts; trials were separated by 1 wk. CHO and CHO+VC significantly blunted the post-exercise increase in plasma concentrations of cortisol, ACTH, total leukocyte, and neutrophil counts and limited the decrease in plasma glucose concentration and bacteria-stimulated neutrophil degranulation. VC increased plasma antioxidant capacity (PAC) during exercise (P < 0.05) but had no effect on any of the immunoendocrine responses (P > 0.05). CHO+VC increased PAC compared to CHO but had no greater effects, above those observed with CHO alone, on any of the immunoendocrine responses. In conclusion, acute supplementation with a high dose of VC has little or no effect on the hormonal, interleukin-6, or immune response to prolonged exercise and combined ingestion of VC with CHO provides no additional effects compared with CHO alone.

Restricted access

Patrick Gray, Andrew Chappell, Alison McE Jenkinson, Frank Thies and Stuart R. Gray

Due to the potential anti-inflammatory properties of fish-derived long chain n-3 fatty acids, it has been suggested that athletes should regularly consume fish oils—although evidence in support of this recommendation is not clear. While fish oils can positively modulate immune function, it remains possible that, due to their high number of double bonds, there may be concurrent increases in lipid peroxidation. The current study aims to investigate the effect of fish oil supplementation on exercise-induced markers of oxidative stress and muscle damage. Twenty males underwent a 6-week double-blind randomized placebo-controlled supplementation trial involving two groups (fish oil or placebo). After supplementation, participants undertook 200 repetitions of eccentric knee contractions. Blood samples were taken presupplementation, postsupplementation, immediately, 24, 48, and 72 hr postexercise and muscle soreness/maximal voluntary contraction (MVC) assessed. There were no differences in creatine kinase, protein carbonyls, endogenous DNA damage, muscle soreness or MVC between groups. Plasma thiobarbituric acid reactive substances (TBARS) were lower (p < .05) at 48 and 72 hr post exercise and H2O2 stimulated DNA damage was lower (p < .05) immediately postexercise in the fish oil, compared with the control group. The current study demonstrates that fish oil supplementation reduces selected markers of oxidative stress after a single bout of eccentric exercise.

Restricted access

Charles J. Hardy and W. Jack Rejeski

Three experiments are presented that evaluate the feeling scale (FS) as a measure of affect during exercise. In Experiment 1,.subjects were instructed to check adjectives on the MAACL-R that they would associate with either a "good" or a "bad" feeling during exercise. As predicted, discriminant function analysis indicated that the good/bad dimension of the FS appears to represent a core of emotional expression. In Experiment 2, subjects rated how they felt during exercise at a rate of perceived exertion (RPE) of 11, 15, and 19. There was considerable heterogeneity in FS for each given RPE. Moreover, RPEs and FS ratings were only moderately correlated, r= - .56, suggesting that phenomenologically the two constructs are not isomorphic. Experiment 3 involved three 4-min bouts of exercise at 30, 60, and 90% V02max. Assessed were pre- and post-exercise affect as. .well as RPEs, responses to the FS, Ve, RR, and VO2. Results revealed that RPE and the FS were moderately related, but only at easy and hard workloads. FS ratings evidenced greater variability as metabolic demands increased, and RPEs consistently had stronger ties to physiologic cues than responses to the FS. The theoretical and pragmatic implications of these data are discussed.

Restricted access

Stacie L. Wing-Gaia, Andrew W. Subudhi and Eldon W. Askew

The purpose of this study was to assess the effects of purified oxygenated water on exercise performance under hypoxic conditions. Nine recreational male cyclists (age = 26.6 ± 5.2 y, weight = 87.6 ± 19.5 kg, VO2peak = 46.5 ± 5.9 mL · kg−1 · min−1) completed two 600 kJ cycling time trials under hypoxic conditions (FIO2 = 13.6% O2, Pbar = 641 mmHg) separated by 2 wk. Trials were completed following 3 d ingestion of 35 mL · kg−1 · d−1 of control (CON) or experimental (EXP) water. Time to completion, heart rate (HR), rate of perceived exertion (RPE), pulse oximetry (SaO2), blood gases (PcO2 and PcCO2), and lactate were measured during the trials. Hydration was assessed with pre- and post-exercise body weight and 24-h urine specific gravity. Performance, hydration, and blood oxygenation were unaffected by EXP water. Results of this study suggest that purified oxygenated water does not improve exercise performance in moderately active males.

Restricted access

Lee N. Burkett, Jack Chisum, Jack Pierce, Kent Pomeroy, Jim Fisher and Margie Martin

Twenty spinal-cord-injured subjects (4 quadriplegics and 16 paraplegics) were maximally stress tested on the Arizona State University wheelchair ergometer. Physiological data for each individual were collected as follows: (a) blood flow in the left leg by a photoelectric plethysmograph before exercise, during exercise, and postexercise, and (b) blood lactates before exercise and post-exercise. Eleven subjects had increased leg blood flow and vasodilation during exercise, but vasoconstriction postexercise. The lactate readings, in comparison to able-bodied individuals, were higher at rest but lower at maximal exercise.

Restricted access

Gareth J. Smith, Edward C. Rhodes and Robert H. Langill

The purpose of this study was to determine if pre-exercise glucose ingestion would improve distance swimming performance. Additionally, pre-exercise glucose was provided at 2 different feeding intervals to investigate the affects of the timing of administration. Ten male triathletes (X¯±SD: age, 29.5 ± 5.0 years; V̇O2peak, 48.8 ± 3.2 ml · kg’1 · min’) swam 4000 m on 3 occasions following the consumption of either a 10% glucose solution 5 min prior to exercise (G5), a 10% glucose solution 35 min prior to exercise (G35), or a similar volume of placebo (PL). Despite a significant difference (p < ,01) in blood glucose concentration prior to exercise (X¯±SD in mmol · L ’: G" 8.4 ± 1.1 vs. G5 5.2 ± 0.5 or PL 5.3 ± 0.4), no significant differences were observed in total time (X¯±SD in minutes: G* 70.7 ± 7.6, Gs 70.1 ± 7.6. PL 71.9 ± 8.4). post-exercise blood glucose (X¯±SD inmmol · L−1: G35 5.1 ± 1.1, G5 5.1 ± 0.9, PL 5.3 ± 0.4), and average heart rate (X¯±SD in bpnv.G" 155.8±10.8, G5 153.6±12.6. PL 152.0± 12.5; p > .05). While not reaching statistical significance, glucose feedings did result in improved individual performance times, ranging from 24 s to 5 min in 8 of the 10 subjects compared to the placebo. These results were found despite significant differences in blood glucose between trials immediately prior to exercise.

Restricted access

Stavros A. Kavouras, John P. Troup and Jacqueline R. Berning

To examine the effects of a 3-day high carbohydrate (H-CHO) and low carbohydrate (L-CHO) diet on 45 min of cycling exercise, 12 endurance-trained cyclists performed a 45-min cycling exercise at 82 ± 2% VO2peak following an overnight fast, after a 6-day diet and exercise control. The 7-day protocol was repeated under 2 randomly assigned dietary trials H-CHO and L-CHO. On days 1–3, subjects consumed a mixed diet for both trials and for days 4–6 consumed isocaloric diets that contained either 600 g or 100 g of carbohydrates, for the HCHO and the L-CHO trials, respectively. Muscle biopsy samples, taken from the vastus lateralis prior to the beginning of the 45-min cycling test, indicated that muscle glycogen levels were significantly higher (p < .05) for the H-CHO trial (104.5 ± 9.4 mmol/kg wet wt) when compared to the L-CHO trial (72.2 ± 5.6 mmol/kg wet wt). Heart rate, ratings of perceived exertion, oxygen uptake, and respiratory quotient during exercise were not significantly different between the 2 trials. Serum glucose during exercise for the H-CHO trial significantly increased (p < .05) from 4.5 ± 0.1 mmol · L−1 (pre) to 6.7 ± 0.6 mmol · L−1 (post), while no changes were found for the L-CHO trial. In addition, post-exercise serum glucose was significantly greater (p < .05) for the H-CHO trial when compared to the L-CHO trial (H-CHO, 6.7 ± 0.6 mmol · L−1; L-CHO, 5.2 ± 0.2 mmol · L−1). No significant changes were observed in serum free fatty acid, triglycerides, or insulin concentration in either trial. The findings suggest that L-CHO had no major effect on 45-min cycling exercise that was not observed with H-CHO when the total energy intake was adequate.

Restricted access

Graeme I. Lancaster, Roy L.P.G. Jentjens, Luke Moseley, Asker E. Jeukendrup and Michael Gleeson

The purpose of the present study was to examine the effect of pre-exercise carbohydrate (CHO) ingestion on circulating leukocyte numbers, plasma interleukin (IL)-6, plasma cortisol, and lipopolysaccharide (LPS)-stimulated neutrophil degranulation responses in moderately trained male cyclists who completed approximately 1-h of high-intensity cycling. The influence of the timing of pre-exercise CHO ingestion was investigated in 8 subjects who consumed 75 g CHO as a glucose solution at either 15 (–15 trial), or 75 (–75 trial) min before the onset of exercise. The influence of the amount of pre-exercise CHO ingestion was investigated in a further 10 subjects who consumed either 25 g or 200 g CHO as a glucose solution or a placebo 45 min before the onset of exercise. At the onset of exercise in the timing experiment, the plasma glucose concentration was significantly (p < .05) lower on the –75 trial compared with pre-drink values, and the plasma cortisol concentration and neutrophil to lymphocyte (N/L) ratio were significantly (p < .05) elevated in the post-exercise period. In the –15 trial, plasma glucose concentration was well maintained, and the plasma cortisol concentration and N/L ratio were not significantly elevated above resting levels. However, LPS-stimulated neutrophil degranulation was similar in the –15 and –75 trials. The amount of CHO ingested had no effect on the magnitude of the rise in the N/L ratio compared with placebo when consumed 45 min pre-exercise. Finally, although an exercise-induced increase in the plasma IL-6 concentration was observed, this effect was independent of pre-exercise CHO ingestion.