Search Results

You are looking at 51 - 60 of 178 items for :

  • "post-exercise" x
  • Sport and Exercise Science/Kinesiology x
Clear All
Restricted access

Patrick Gray, Andrew Chappell, Alison McE Jenkinson, Frank Thies and Stuart R. Gray

Due to the potential anti-inflammatory properties of fish-derived long chain n-3 fatty acids, it has been suggested that athletes should regularly consume fish oils—although evidence in support of this recommendation is not clear. While fish oils can positively modulate immune function, it remains possible that, due to their high number of double bonds, there may be concurrent increases in lipid peroxidation. The current study aims to investigate the effect of fish oil supplementation on exercise-induced markers of oxidative stress and muscle damage. Twenty males underwent a 6-week double-blind randomized placebo-controlled supplementation trial involving two groups (fish oil or placebo). After supplementation, participants undertook 200 repetitions of eccentric knee contractions. Blood samples were taken presupplementation, postsupplementation, immediately, 24, 48, and 72 hr postexercise and muscle soreness/maximal voluntary contraction (MVC) assessed. There were no differences in creatine kinase, protein carbonyls, endogenous DNA damage, muscle soreness or MVC between groups. Plasma thiobarbituric acid reactive substances (TBARS) were lower (p < .05) at 48 and 72 hr post exercise and H2O2 stimulated DNA damage was lower (p < .05) immediately postexercise in the fish oil, compared with the control group. The current study demonstrates that fish oil supplementation reduces selected markers of oxidative stress after a single bout of eccentric exercise.

Restricted access

Paula Robson-Ansley, Martin Barwood, Clare Eglin and Les Ansley

Fatigue is a predictable outcome of prolonged physical activity; yet its biological cause remains uncertain. During exercise, a polypeptide messenger molecule inter-leukin-6 (IL-6) is actively produced. Previously, it has been demonstrated that administration of recombinant IL-6 (rhIL-6) impairs 10-km run performance and heightened sensation of fatigue in trained runners. Both high carbohydrate diets and carbohydrate ingestion during prolonged exercise have a blunting effect on IL-6 levels post endurance exercise. We hypothesized that carbohydrate ingestion may improve performance during a prolonged bout of exercise as a consequence of a blunted IL-6 response. Seven recreationally trained fasted runners completed two 90-min time trials under CHO supplemented and placebo conditions in a randomized order. The study was of a double-blinded, placebo-controlled, cross-over study design. Distance covered in 90 min was significantly greater following exogenous carbohydrate ingestion compared with the placebo trial (19.13 ± 1.7 km and 18.29 ± 1.9 km, respectively, p = .0022). While post exercise IL-6 levels were significantly lower in the CHO trial compared with the placebo trial (5.3 ± 1.9 pg·mL−1 and 6.6 ± 3.0 pg·mL−1, respectively; p = .0313), this difference was considered physiologically too small to mediate the improvement in time trial performance.

Restricted access

Dru A. Henson, David C. Nieman, E. Edward Pistilli, Brian Schilling, AnnaRita Colacino, Allan C. Utter, Omar R. Fagoaga, Debra M. Vinci and Sandra L. Nehlsen-Cannarella

The influence of 6% carbohydrate ingestion and age on PHA-induced lymphocyte proliferation and in vitro cytokine production was studied in 48 runners following a competitive marathon. Runners were randomly assigned to carbohydrate (C; n = 23) and placebo (P; n = 25) groups, with blood samples taken before, immediately after, and 1.5 hr post-race. C versus P ingestion resulted in higher plasma glucose, lower plasma corlisol, reduced neutrophilia, and mono-cytosis during recovery, but had no effect on the post-exercise reduction in T-lymphocytes or NK cells, or on race times. No group differences were observed for PHA-induced lymphocyte proliferation or cytokine production. However, for all subjects combined, lymphocyte proliferation and IFN-γ secretion decreased significantly below pre-race values by 1.5 hr of recovery, and these were negatively correlated with plasma cortisol. Young (<50 years; n = 36) and old (≥50 years; n = 12) runners exhibited parallel post-race declines in lymphocyte proliferation and IFN-γ secretion, with the older group exhibiting a 33–59% lower proliferation at each time point. In conclusion, PHA-induced lymphocyte proliferation and cytokine production decreased significantly following a marathon, and this decrease was strongly linked to cortisol and only partially linked to T-cell changes. This decrease occurred in both younger and older runners and was not influenced by carbohydrate.

Restricted access

Mindy Millard-Stafford, Gordon L. Warren, Leah Moore Thomas, J. Andrew Doyle, Teresa Snow and Kristen Hitchcock

Post-exercise nutrition is critical to facilitate recovery from training. To determine if added protein (P) or increased carbohydrate (CHO) differentially improves recovery, eight runners ingested: 6% CHO (CHO6), 8% CHO + 2% protein (CHOP), and isocaloric 10% CHO (CHO10) following a 21-km run plus treadmill run to fatigue (RTF) at 90% VO2max. RTF was repeated after 2 h recovery. After 24 h, a 5 km time trial was performed. Insulin and blood glucose were higher (P < 0.05) following CHO10 compared to CHO-P and CHO6, but did not affect improvement from the first to second RTF (29.6% ± 6, 40.5% ± 8.8, 40.5% ± 14.5) or 5 km time (1100 ± 36.3, 1110 ± 37.3, 1118 ± 36.5 s). CK was not different, but perceived soreness with CHO-P (2.1 ± 0.5) was lower than CHO10 (5.2 ± 0.7). Additional calories from CHO or P above that provided in sports drinks does not improve subsequent performance after recovery; but less soreness suggests benefits with CHO-P.

Restricted access

Charles J. Hardy and W. Jack Rejeski

Three experiments are presented that evaluate the feeling scale (FS) as a measure of affect during exercise. In Experiment 1,.subjects were instructed to check adjectives on the MAACL-R that they would associate with either a "good" or a "bad" feeling during exercise. As predicted, discriminant function analysis indicated that the good/bad dimension of the FS appears to represent a core of emotional expression. In Experiment 2, subjects rated how they felt during exercise at a rate of perceived exertion (RPE) of 11, 15, and 19. There was considerable heterogeneity in FS for each given RPE. Moreover, RPEs and FS ratings were only moderately correlated, r= - .56, suggesting that phenomenologically the two constructs are not isomorphic. Experiment 3 involved three 4-min bouts of exercise at 30, 60, and 90% V02max. Assessed were pre- and post-exercise affect as. .well as RPEs, responses to the FS, Ve, RR, and VO2. Results revealed that RPE and the FS were moderately related, but only at easy and hard workloads. FS ratings evidenced greater variability as metabolic demands increased, and RPEs consistently had stronger ties to physiologic cues than responses to the FS. The theoretical and pragmatic implications of these data are discussed.

Restricted access

Glen Davison and Michael Gleeson

The aim of the present study was to investigate the effect of vitamin C with or without carbohydrate consumed acutely in beverages before and during prolonged cycling on immunoendocrine responses. In a single blind, randomized manner six healthy, moderately trained males exercised for 2.5 h at 60% VO2max and consumed either placebo (PLA), carbohydrate (CHO, 6% w/v), vitamin C (VC, 0.15% w/v) or CHO+VC beverages before and during the bouts; trials were separated by 1 wk. CHO and CHO+VC significantly blunted the post-exercise increase in plasma concentrations of cortisol, ACTH, total leukocyte, and neutrophil counts and limited the decrease in plasma glucose concentration and bacteria-stimulated neutrophil degranulation. VC increased plasma antioxidant capacity (PAC) during exercise (P < 0.05) but had no effect on any of the immunoendocrine responses (P > 0.05). CHO+VC increased PAC compared to CHO but had no greater effects, above those observed with CHO alone, on any of the immunoendocrine responses. In conclusion, acute supplementation with a high dose of VC has little or no effect on the hormonal, interleukin-6, or immune response to prolonged exercise and combined ingestion of VC with CHO provides no additional effects compared with CHO alone.

Restricted access

Lee N. Burkett, Jack Chisum, Jack Pierce, Kent Pomeroy, Jim Fisher and Margie Martin

Twenty spinal-cord-injured subjects (4 quadriplegics and 16 paraplegics) were maximally stress tested on the Arizona State University wheelchair ergometer. Physiological data for each individual were collected as follows: (a) blood flow in the left leg by a photoelectric plethysmograph before exercise, during exercise, and postexercise, and (b) blood lactates before exercise and post-exercise. Eleven subjects had increased leg blood flow and vasodilation during exercise, but vasoconstriction postexercise. The lactate readings, in comparison to able-bodied individuals, were higher at rest but lower at maximal exercise.

Restricted access

Gareth J. Smith, Edward C. Rhodes and Robert H. Langill

The purpose of this study was to determine if pre-exercise glucose ingestion would improve distance swimming performance. Additionally, pre-exercise glucose was provided at 2 different feeding intervals to investigate the affects of the timing of administration. Ten male triathletes (X¯±SD: age, 29.5 ± 5.0 years; V̇O2peak, 48.8 ± 3.2 ml · kg’1 · min’) swam 4000 m on 3 occasions following the consumption of either a 10% glucose solution 5 min prior to exercise (G5), a 10% glucose solution 35 min prior to exercise (G35), or a similar volume of placebo (PL). Despite a significant difference (p < ,01) in blood glucose concentration prior to exercise (X¯±SD in mmol · L ’: G" 8.4 ± 1.1 vs. G5 5.2 ± 0.5 or PL 5.3 ± 0.4), no significant differences were observed in total time (X¯±SD in minutes: G* 70.7 ± 7.6, Gs 70.1 ± 7.6. PL 71.9 ± 8.4). post-exercise blood glucose (X¯±SD inmmol · L−1: G35 5.1 ± 1.1, G5 5.1 ± 0.9, PL 5.3 ± 0.4), and average heart rate (X¯±SD in bpnv.G" 155.8±10.8, G5 153.6±12.6. PL 152.0± 12.5; p > .05). While not reaching statistical significance, glucose feedings did result in improved individual performance times, ranging from 24 s to 5 min in 8 of the 10 subjects compared to the placebo. These results were found despite significant differences in blood glucose between trials immediately prior to exercise.

Restricted access

Matthew S. Ganio, Jennifer F. Klau, Elaine C. Lee, Susan W. Yeargin, Brendon P. McDermott, Maxime Buyckx, Carl M. Maresh and Lawrence E. Armstrong

The purpose of this study was to compare the effects of a carbohydrate-electrolyte plus caffeine, carnitine, taurine, and B vitamins solution (CE+) and a carbohydrate-electrolyte-only solution (CE) vs. a placebo solution (PLA) on cycling performance and maximal voluntary contraction (MVC). In a randomized, double-blind, crossover, repeated-measures design, 14 male cyclists (M ± SD age 27 ± 6 yr, VO2max 60.4 ± 6.8 ml · kg−1 · min−1) cycled for 120 min submaximally (alternating 61% ± 5% and 75% ± 5% VO2max) and then completed a 15-min performance trial (PT). Participants ingested CE+, CE, or PLA before (6 ml/kg) and every 15 min during exercise (3 ml/kg). MVC was measured as a single-leg isometric extension (70° knee flexion) before (pre) and after (post) exercise. Rating of perceived exertion (RPE) was measured throughout. Total work accumulated (KJ) during PT was greater (p < .05) in CE+ (233 ± 34) than PLA (205 ± 52) but not in CE (225 ± 39) vs. PLA. MVC (N) declined (p < .001) from pre to post in PLA (988 ± 213 to 851 ± 191) and CE (970 ± 172 to 870 ± 163) but not in CE+ (953 ± 171 to 904 ± 208). At Minutes 60, 90, 105, and 120 RPE was lower in CE+ (14 ± 2, 14 ± 2, 12 ± 1, 15 ± 2) than in PLA (14 ± 2, 15 ± 2, 14 ± 2, 16 ± 2; p < .001). CE+ resulted in greater total work than PLA. CE+, but not PLA or CE, attenuated pre-to-post MVC declines. Performance increases during CE+ may have been influenced by lower RPE and greater preservation of leg strength during exercise in part as a result of the hypothesized effects of CE+ on the central nervous system and skeletal muscle.

Restricted access

Nicolette C. Bishop, Michael Gleeson, Ceri W. Nicholas and Ajmol Ali

Ingesting carbohydrate (CHO) beverages during prolonged, continuous heavy exercise results in smaller changes in the plasma concentrations of several cytokines and attenuates a decline in neutrophil function. In contrast, ingesting CHO during prolonged intermittent exercise appears to have negligible influence on these responses, probably due to the overall moderate intensity of these intermittent exercise protocols. Therefore, we examined the effect of CHO ingestion on plasma interIeukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-stimuIated neutrophil degranulation responses to high-intensity intermittent running. Six trained male soccer players performed 2 exercise trials, 7 days apart, in a randomized, counterbalanced design. On each occasion, they completed six 15-min periods of intermittent running consisting of maximal sprinting interspersed with less intense periods of running and walking. Subjects consumed either CHO or artificially sweetened placebo(PLA) beverages immediately before and at 15-min intervals during the exercise. At 30 min post-exercise, CHO versus PLA was associated with a higher plasma glucose concentration (p< .01), a lower plasma cortisol and IL-6 concentration (p < .02), and fewer numbers of circulating neutrophils (p < .05). Following the exercise, LPS-stimulated elastase release per neutrophil fell 31 % below baseline values on the PLA trial (p = .06) compared with 11% on the CHO trial (p = .30). Plasma TNF-α concentration increased following the exercise (main effect of time, p < .001) but was not affected by CHO. These data indicate that CHO ingestion attenuates changes in plasma IL-6 concentration, neutrophil trafficking, and LPS-stimulated neutrophil degranulation in response to intermittent exercise that involves bouts of very high intensity exercise.