Search Results

You are looking at 51 - 60 of 141 items for :

  • "surface electromyography" x
Clear All
Restricted access

Bruce C. Elliott, Kevin G. Baxter and Thor F. Besier

This research examined the influence on performance of no-pause and mean delays of 0.97 s and 1.5 s between the eccentric and concentric phases of the stretch-shorten cycle movement of internal rotation (IR) of me upper arm. Videography and surface electromyography were used in the assessment of 19 athletes throwing a baseball in a manner that constrained all degrees of freedom other than upper-arm IR. Results demonstrated that the pectoralis major, latissimus dorsi, and anterior deltoid muscles were all active at above 100% maximum voluntary contraction (MVC) during IR. The maximum velocity of the wrist decreased with increasing pause time between me eccentric and concentric phases of the IR movement. A mean 21.9% augmentation to the maximum wrist velocity was recorded when the no-pause delay and a mean delay of 1.5 s were compared. There were no electromyographically discernible differences recorded either prior to or after release for any of the monitored muscles during IR across the pause conditions. It is evident therefore that the benefits of a prestretch during external rotation (ER) have a significant influence on the subsequent velocity of IR.

Restricted access

Roald Otten, Johannes L. Tol, Per Holmich and Rodney Whiteley

Study Design:

Cross-sectional.

Context:

Gluteus medius (GM) muscle dysfunction is associated with overuse injury. The GM is functionally composed of 3 separate subdivisions: anterior, middle, and posterior. Clinical assessment of the GM subdivisions is relevant to detect strength and activation deficits and guide specific rehabilitation programs. However, the optimal positions for assessing the strength and activation of these subdivisions are unknown.

Objective:

The first aim was to establish which strength-testing positions produce the highest surface electromyography (sEMG) activation levels of the individual GM subdivisions. The second aim was to evaluate differences in sEMG activation levels between the tested and contralateral (stabilizing) leg.

Method:

Twenty healthy physically active male subjects participated in this study. Muscle activity using sEMG was recorded for the GM subdivisions in 8 different strength-testing positions and analyzed using repeated-measures analysis of variance.

Results:

Significant differences between testing positions for all 3 GM subdivisions were found. There were significant differences between the tested and the contralateral anterior and middle GM subdivisions (P < .01). The posterior GM subdivision showed no significant difference (P = .154).

Conclusion:

Side-lying in neutral and side-lying with hip internal rotation are the 2 positions recommended to evaluate GM function and guide specific GM rehabilitation.

Full access

Bente R. Jensen, Line Hovgaard-Hansen and Katrine L. Cappelen

Running on a lower-body positive-pressure (LBPP) treadmill allows effects of weight support on leg muscle activation to be assessed systematically, and has the potential to facilitate rehabilitation and prevent overloading. The aim was to study the effect of running with weight support on leg muscle activation and to estimate relative knee and ankle joint forces. Runners performed 6-min running sessions at 2.22 m/s and 3.33 m/s, at 100%, 80%, 60%, 40%, and 20% body weight (BW). Surface electromyography, ground reaction force, and running characteristics were measured. Relative knee and ankle joint forces were estimated. Leg muscles responded differently to unweighting during running, reflecting different relative contribution to propulsion and antigravity forces. At 20% BW, knee extensor EMGpeak decreased to 22% at 2.22 m/s and 28% at 3.33 m/s of 100% BW values. Plantar flexors decreased to 52% and 58% at 20% BW, while activity of biceps femoris muscle remained unchanged. Unweighting with LBPP reduced estimated joint force significantly although less than proportional to the degree of weight support (ankle).It was concluded that leg muscle activation adapted to the new biomechanical environment, and the effect of unweighting on estimated knee force was more pronounced than on ankle force.

Restricted access

Takeo Nagura, Hideo Matsumoto, Yoshimori Kiriyama, Ajit Chaudhari and Thomas P. Andriacchi

The aim of the study was to estimate the tibiofemoral joint force in deep flexion to consider how the mechanical load affects the knee. We hypothesize that the joint force should not become sufficiently large to damage the joint under normal contact area, but should become deleterious to the joint under the limited contact area. Sixteen healthy knees were analyzed using a motion capture system, a force plate, a surface electromyography, and a knee model, and then tibiofemoral joint contact forces were calculated. Also, a contact stress simulation using the contact areas from the literature was performed. The peak joint contact forces (M ± SD) were 4566 ± 1932 N at 140 degrees in rising from full squat and 4479 ± 1478 N at 90 degrees in rising from kneeling. Under normal contact area, the tibiofemoral contact stresses in deep flexion were less than 5 MPa and did not exceed the stress to damage the cartilage. The contact stress simulation suggests that knee prosthesis having the contact area smaller than 200 mm2 may be problematic since the contact stress in deep flexion would become larger than 21 MPa, and it would lead damage or wear of the polyethylene.

Restricted access

Renan Lima Monteiro, Joana Hoverter Facchini, Diego Galace de Freitas, Bianca Callegari and Sílvia Maria Amado João

Context:

Pelvic-drop exercises are often used to strengthen the gluteus medius (GM) muscle with the aim of increasing or prioritizing its recruitment. However, the effect of hip rotation on the performance of the action of the GM is unknown.

Objective:

To evaluate the effect of hip rotation on the recruitment of the GM, tensor fasciae latae (TFL), and quadratus lumborum (QL).

Method:

Seventeen healthy subjects performed 2 sets of 4 repetitions of pelvic-drop exercise in random order with pelvic-drop lateral, medial, and neutral rotation of the hip.

Main Outcome Measures:

The electromyographic (EMG) activity of the GM, TFL, and QL was evaluated using surface electromyography.

Results:

There were significant increases in the activation of the GM with medial and neutral rotation compared with lateral rotation (P = .03, P = .01, respectively), and there was no difference between medial and neutral rotation (P = 1.00). There was no difference in EMG activity of the TFL and QL in any of the positions. The GM:TFL ratio was the same in all analyzed positions. Regarding the GM:QL ratio, there was a significant increase with medial rotation compared with lateral rotation (P = .02).

Conclusions:

Pelvic-drop exercises are more efficient for activating the GM when the hip is in medial rotation and neutral position.

Restricted access

Jennifer E. Earl

Context:

Gluteus medius (GM) contraction during single-leg stance prevents the contralateral pelvis from “dropping,” providing stability for lower extremity motion.

Objective:

To determine which combination of hip rotation and abduction exercise results in the greatest activity of the GM and whether the GM responds to increased loads in these exercises.

Design and Setting:

Repeated measures, laboratory.

Subjects:

20 healthy volunteers.

Interventions:

Resistance (2.26 and 4.53 kg) was provided to 3 variations of a single-leg-stance exercise: hip abduction only, abduction-internal rotation (ABD-IR), and abduction-external rotation.

Measurements:

Muscle activity was recorded from the anterior and middle portions of the GM using surface electromyography.

Results:

ABD-IR produced the most activity in the anterior and middle sections of the GM muscle. The 4.53-kg load produced significantly more activity than the 2.26-kg load (P < .05).

Conclusions:

The GM is most active when performing abduction and internal rotation of the hip. This information could be used to develop GM-strengthening exercises.

Restricted access

Glyn Howatson, Raphael Brandon and Angus M. Hunter

There is a great deal of research on the responses to resistance training; however, information on the responses to strength and power training conducted by elite strength and power athletes is sparse.

Purpose:

To establish the acute and 24-h neuromuscular and kinematic responses to Olympic-style barbell strength and power exercise in elite athletes.

Methods:

Ten elite track and field athletes completed a series of 3 back-squat exercises each consisting of 4 × 5 repetitions. These were done as either strength or power sessions on separate days. Surface electromyography (sEMG), bar velocity, and knee angle were monitored throughout these exercises and maximal voluntary contraction (MVC), jump height, central activation ratio (CAR), and lactate were measured pre, post, and 24 h thereafter.

Results:

Repetition duration, impulse, and total work were greater (P < .01) during strength sessions, with mean power being greater (P < .01) after the power sessions. Lactate increased (P < .01) after strength but not power sessions. sEMG increased (P < .01) across sets for both sessions, with the strength session increasing at a faster rate (P < .01) and with greater activation (P < .01) by the end of the final set. MVC declined (P < .01) after the strength and not the power session, which remained suppressed (P < .05) 24 h later, whereas CAR and jump height remained unchanged.

Conclusion:

A greater neuromuscular and metabolic demand after the strength and not power session is evident in elite athletes, which impaired maximal-force production for up to 24 h. This is an important consideration for planning concurrent athlete training.

Restricted access

Benjamin Henry, Todd McLoda, Carrie L. Docherty and John Schrader

Context:

Peroneal reaction to sudden inversion has been determined to be too slow to overcome the joint motion. A focused plyometric training program may decrease the muscle's reaction time.

Objective:

To determine the effect of a 6-wk plyometric training program on peroneus longus reaction time.

Design:

Repeated measures.

Setting:

University research laboratory.

Participants:

48 healthy volunteers (age 20.0 ± 1.2 y, height 176.1 ± 16.9 cm, weight 74.5 ± 27.9 kg) from a large Midwestern university. Subjects were randomly assigned to either a training group or a control group.

Interventions:

Independent variables were group at 2 levels (training and no training) and time at 2 levels (pretest and posttest). The dependent variable was peroneal latency measured with surface electromyography. A custom-made trapdoor device capable of inverting the ankle to 30° was also used. Latency data were obtained from the time the trapdoor dropped until the peroneus longus muscle activated. Peroneal latency was measured before and after the 6-wk training period. The no-training group was instructed to maintain current activities. The training group performed a 6-wk plyometric protocol 3 times weekly. Data were examined with a repeated-measures ANOVA with 1 within-subject factor (time at 2 levels) and 1 between-subjects factor (group at 2 levels). A priori alpha level was set at P < .05.

Main Outcome Measures:

Pretest and posttest latency measurements (ms) were recorded for the peroneus longus muscle.

Results:

The study found no significant group-by-time interaction (F 1,46 = 0.03, P = .87). In addition, there was no difference between the pretest and posttest values (pretest = 61.76 ± 14.81 ms, posttest = 59.24 ± 12.28 ms; P = .18) and no difference between the training and no-training groups (training group = 59.10 ± 12.18 ms, no-training group = 61.79 ± 15.18 ms; P = .43).

Conclusions:

Although latency measurements were consistent with previous studies, the plyometric training program did not cause significant change in the peroneus longus reaction time.

Restricted access

Jeni R. McNeal, William A. Sands and Michael H. Stone

Purpose:

The aim of this study was to investigate the effects of a maximal repeated-jumps task on force production, muscle activation and kinematics, and to determine if changes in performance were dependent on gender.

Methods:

Eleven male and nine female athletes performed continuous countermovement jumps for 60 s on a force platform while muscle activation was assessed using surface electromyography. Performances were videotaped and digitized (60 Hz). Data were averaged across three jumps in 10-s intervals from the initial jump to the final 10 s of the test.

Results:

No interaction between time and gender was evident for any variable; therefore, all results represent data collapsed across gender. Preactivation magnitude decreased across time periods for anterior tibialis (AT, P < .001), gastrocnemius (GAS, P < .001) and biceps femoris (BF, P = .03), but not for vastus lateralis (VL, P = .16). Muscle activation during ground contact did not change across time for BF; however, VL, G, and AT showed significant reductions (all P < .001). Peak force was reduced at 40 s compared with the initial jumps, and continued to be reduced at 50 and 60 s (all P < .05). The time from peak force to takeoff was greater at 50 and 60 s compared with the initial jumps (P < .05). Both knee fexion and ankle dorsifexion were reduced across time (both P < .001), whereas no change in relative hip angle was evident (P = .10). Absolute angle of the trunk increased with time (P < .001), whereas the absolute angle of the shank decreased (P < .001).

Conclusions:

In response to the fatiguing task, subjects reduced muscle activation and force production and altered jumping technique; however, these changes were not dependent on gender.

Restricted access

Kieran O’Sullivan, Ellen Herbert, David Sainsbury, Karen McCreesh and Amanda Clifford

Context:

The gluteus medius (Gmed) is proposed to consist of 3 functional subdivisions (anterior, middle, and posterior). Gmed weakness and dysfunction have been implicated in numerous lower extremity disorders, including patellofemoral pain syndrome (PFPS). PFPS is a knee condition that frequently occurs in females and is associated with activities such as squatting and stair climbing. There is a lack of evidence for the role of the subdivisions of the Gmed in females with and without PFPS.

Objective:

To compare muscle activation in the 3 Gmed subdivisions during 4 weight-bearing exercises in women with and without PFPS.

Design:

Single-session, repeated-measures observational study.

Setting:

University research laboratory.

Participants:

Convenience sample of 12 women with PFPS and 12 age- and gender-matched asymptomatic controls.

Intervention:

Participants performed 4 weight-bearing exercises (wall press, pelvic drop, step-up-and-over, and unilateral squat) 3 times while surface electromyography (sEMG) activity of the Gmed segments was recorded.

Main Outcome Measures:

sEMG muscle activity for each functional subdivision of the Gmed during each weight-bearing exercise was analyzed using a mixed between–within-subjects ANOVA (post hoc Bonferroni).

Results:

No statistically significant differences in muscle activation were found between the PFPS and healthy participants (P = .97). Furthermore, there were no statistically significant differences between the exercises (P = .19) or muscle fibers (P = .36) independent of group analyzed. However, the activation of the subdivisions varied according to the exercise performed (P = .003).

Conclusions:

Similar levels of muscle activation were recorded in the Gmed subdivisions of the PFPS and healthy participants during the different exercises. This is the first study to examine all 3 Gmed subdivisions in PFPS. Future studies using larger sample sizes should also investigate onset and duration of muscle activation in all Gmed subdivisions in both healthy individuals and those with PFPS.