Search Results

You are looking at 61 - 70 of 186 items for :

  • "Olympic Games" x
  • Sport and Exercise Science/Kinesiology x
Clear All
Restricted access

Philip Davis, Peter R. Benson, Robert Waldock and Andrew J. Connorton

Female boxing debuted at the 2012 London Olympic Games. To better understand the performance aspects of the sport, video footage of eighteen 4 × 2-min bouts were analyzed. The boxers involved in the competition were of an elite level (mean ± SD), age 26.4 ± 4.6 y, height 169.3 ± 6.2 cm, and weight 60.3 ± 10.0 kg. Analysis revealed an activity rate of ~1.6 actions/s, including ~16 punches, ~3.3 defensive movements, and ~63 vertical hip movements, all per minute, over the 4 × ~132-s rounds (R). A 2 × 4 (outcome × round) ANOVA with repeated measures over the rounds was used to analyze the data. Winners maintained a higher activity rate in round 1 (R1) and R2; a higher movement rate in R2, R3, and R4; and an increased punch accuracy including the ratio of total punches to punches landed in R3 and air punches as a percentage of punches missed in R1 and R3. Specific techniques that discriminate between successful and unsuccessful female amateur boxers include the straight rear-hand and body punches, higher for winners in R1, as well as uppercut punches and defensive foot movements, higher for winners in R4. Findings highlight the current demands of elite amateur female boxing. These data will be useful for those designing training programs and may also be useful for guiding sport-specific fitness testing.

Restricted access

LeRoy W. Alaways, Sean P. Mish and Mont Hubbard

Pitched-baseball trajectories were measured in three dimensions during competitions at the 1996 Summer Olympic games using two high-speed video cameras and standard DLT techniques. A dynamic model of baseball flight including aerodynamic drag and Magnus lift forces was used to simulate trajectories. This simulation together with the measured trajectory position data constituted the components of an estimation scheme to determine 8 of the 9 release conditions (3 components each of velocity, position, and angular velocity) as well as the mean drag coefficient CD and terminal conditions at home plate. The average pitch loses 5% of its initial velocity during flight. The dependence of estimated drag coefficient on Reynolds number hints at the possibility of the drag crisis occurring in pitched baseballs. Such data may be used to quantify a pitcher’s performance (including fastball speed and amount of curve-ball break) and its improvement or degradation over time. It may also be used to understand the effects of release parameters on baseball trajectories.

Restricted access

Ralph Mann and John Herman

Selected kinematic variables in the performance of the Gold and Silver medalists and the eighth-place finisher in the men's 200-meter sprint final at the 1984 Summer Olympic Games were investigated. Cinematographic records were obtained for all track running events at the Games, with the 200-meter performers singled out for initial analysis. In this race, sagittal view filming records (100 fps) were collected at the middle (125-meter mark) and end (180-meter mark) of the performance. Computer-generated analysis variables included both direct performance variables (body velocity, stride rate, etc.) and upper and lower body kinematics (upper arm position, lower leg velocity, etc.) that have previously been utilized in the analysis of elite athlete sprinters. The difference in place finish was related to the performance variables body horizontal velocity (direct), stride rate (direct), and support time (indirect). The critical body kinematics variables related to success included upper leg angle at takeoff (indirect), upper leg velocity during support (direct), lower leg velocity at touchdown (direct), foot to body touchdown distance (indirect), and relative foot velocity at touchdown.

Restricted access

Nancy R. Deuel and Jong-Jin Park

Limb contact variables of the gaits of dressage horses were determined for competitors at the 1988 Seoul Summer Olympic Games in the team and individual dressage competitions. Two 16-mm motion picture cameras filming at 100 fps were aimed perpendicular to the plane of equestrian motion along the HXF and MXK diagonals of the standard dressage arena. Eighteen competitors in team dressage were filmed during the Grand Prix test while executing the extended walk, extended trot, and left lead extended canter. Fifteen horses selected as finalists for individual dressage medals were filmed during the Grand Prix Special test executing the extended trot, one-stride canter lead changes, two-stride canter lead changes, and the left lead extended canter. Velocities of the extended walk, extended trot, and extended canter were positively related to stride length. Velocities of the Grand Prix extended walk and Grand Prix Special extended trot were positively related to stride frequency. Limb contact patterns of the extended walk stride appeared to have relatively little importance in scoring. Certain characteristics of the extended trot and extended canter were strongly related to scores attained in Grand Prix Special dressage tests, with highest scores achieved by horses with the longest, fastest strides. For canter strides involving lead changes, no limb contact variables were detected that were significantly related to scores. This study provided the first objective documentation of the limb contact patterns of the walk, trot, and canter of world-class dressage horses.

Restricted access

James G. Hay and John A. Miller Jr.

The purposes of this study were (a) to describe the techniques used by elite triple jumpers and (b) to determine which characteristics were significantly related to the officially recorded distance of the jump. The subjects were the 12 finalists in the Triple Jump at the 1984 Olympic Games. Two motion-picture cameras placed with their optical axes at right angles to the runway were used to record the performances of the subjects. Means and standard deviations of the variables identified in a theoretical model and correlations between these variables and the distance of the jump were computed. Correlation of the distances achieved in each of the phases with the official distance of the jump suggested that, although the hop and jump phases made greater percentage contributions to the official distance than did the step phase, they accounted for only small amounts of the variance in that distance. Significant correlations of other independent variables with the distance of the jump suggested that the more the athlete's resources are expended prior to the jump phase and the more vertical his effort at takeoff into the jump, the better is the final result.

Restricted access

Stephen Seiler

An Olympic Games is a measurable test of a nation´s sporting power. Medal counts are the object of intense scrutiny after every Olympiad. Most countries celebrate any medal with national glee, since 60% of competing countries will win none. In 2012, 10% of the competing countries won 75% of all medals. Despite this concentration among a few countries, more countries are winning more medals now than 20 years ago, thanks in part to athlete-support and -development programs arising around the globe. Small strong sporting countries like Norway are typified by fairly large variation in medal results from Olympiad to Olympiad and a high concentration of results in a few sports. These are important factors to consider when evaluating national performance and interpreting the medal count. Medal conversion, podium placements relative to top 8 placements, may provide a measure of the competitiveness of athlete-support programs in this international zero sum game where the cost of winning Olympic gold keeps rising whether measured in dollars or human capital.

Restricted access

Patrick Kennedy, Peter Brown, Somadeepti N. Chengalur and Richard C. Nelson

The performance of male and female swimmers (N = 397) competing in the preliminary heats of the four 100-meter swimming events during the Seoul Olympic Games was videotaped and later analyzed to determine stroke rate (SR) and stroke length (SL). These data were combined with age, height, and final time (FT) values for statistical analyses which included the relationships among these variables, comparison of male and female performance, and assessment of differences in the four events. The results revealed the following ranges of correlations between SR and SL (rs from −0.65 to −0.90), SL and FT (rs from −0.32 to −0.80), height and SL (0.19 to 0.58), and age and FT (-0.16 to −.051). The factor of SL was identified as the dominant feature of successful swimming performance. The men were older and taller, had longer stroke lengths and higher stroke rates (two of four events), and swam faster than the women. The differences in final times across the four events (freestyle fastest, breaststroke slowest) were due to specific combinations of SR and SL, with neither parameter being consistently dominant.

Restricted access

John Garhammer

The heaviest successful snatch and clean and jerk for five Gold medalists in weight-lifting at the 1984 Olympic Games were analyzed from 16mm film. Bar trajectories all showed that as the barbell was lifted from the platform it moved toward the athlete during the first pull, then away from the athlete and finally toward him again as it began to descend during the catch phase. Bar velocity profiles showed that most lifters decelerated the barbell at the end of the first pull while reorienting their body position for the second pull. Calculated power outputs were large in magnitude and showed considerable similarities for selected phases of the lifts of a given athlete. Power output values for complete snatch and clean pulls typically ranged between 28 and 35 W/Kg of body mass. Higher values were found for subphases of the pulls and for the jerk thrusts. Previously published data on one of the Gold medalists permitted longitudinal comparisons of his lifting technique. High power output capacity was the most distinguishing characteristic of the athletes studied and is likely necessary for successful participation in weightlifting at the elite level.

Restricted access

Nicholas P. Linthorne

The effect of wind on the race times of international standard 100-m sprinters was determined using statistical information from official competitions. A time adjustment curve derived from mathematical models was fitted to performances by the finalists at the U.S. Olympic Trials and TAC Championships over the last 10 years, and to multiple performances by individual athletes at recent Olympic Games and World Championships. Consistent results were obtained from the two studies. The rate of improvement in. race time gradually decreased with increasing wind velocity, and so the disadvantage of a head wind was greater than the benefit of a tail wind of the same magnitude. The advantage of a 2-m/s following wind was 0.10 ± 0.01 s for the male sprinters and 0.12 ± 0.02 s for the female sprinters. These results indicated that the altitude of Mexico City (2,250 m) provides an advantage of about 0.07 s. Time adjustment versus wind velocity curves are presented that allow comparison of the merit of 100-m sprint times achieved under diverse wind conditions. The curves supersede those derived by previous investigators.

Restricted access

Federico Pizzuto, Matteo Bonato, Gialunca Vernillo, Antonio La Torre and Maria Francesca Piacentini


To analyze how many finalists of the International Association of Athletics Federations (IAAF) World Junior Championships (WJCs) in the middle- and long-distance track events had dropped out from high-level competitions.


Starting from 2002, the 8 male and the 8 female finalists in the middle- and long-distance events of 6 editions of the WJC were followed until 2015 to evaluate how many missed the IAAF rankings for 2 consecutive years starting from the year after WJC participation. For those still competing at elite level, their careers were monitored.


In 2015, 61% of the 2002, 54.8% of the 2004, 48.3% of the 2006, 37.5% of the 2008, 26.2% of the 2010, and 29% of the 2012 WJC finalists were not present in the IAAF rankings. Of the 368 athletes considered, 75 (20.4%) were able to achieve the IAAF top 10 in 2.4 ± 2.2 y. There is evidence of relationships between dropout and gender (P = .040), WJC edition (P = .000), and nationality (P = .010) and between the possibility to achieve the IAAF top 10 and dropout (P = .000), continent (P = .001), relative age effect (P = .000), and quartile of birth (P = .050).


Even if 23 of the finalists won a medal at the Olympic Games or at the World Championships, it is still not clear if participation at the WJC is a prerequisite to success at a senior level.