Search Results

You are looking at 61 - 70 of 531 items for :

  • "anaerobic" x
Clear All
Restricted access

Ana C. Holt, Daniel J. Plews, Katherine T. Oberlin-Brown, Fabrice Merien and Andrew E. Kilding

-intensity exercise performed at (1) maximal oxygen uptake (5 × 3.5 min on [work periods], 4 min recovery [light rowing]; VO 2 max IT); (2) maximal anaerobic glycolytic power (10 × 30 s on, 5 min recovery; glycolytic IT); and (3) VT 2 (5 × 10 min on, 4 min recovery; threshold IT). Each IT session was separated by 7

Restricted access

Hugo Maciejewski, Abderrahmane Rahmani, Frédéric Chorin, Julien Lardy, Caroline Giroux and Sébastien Ratel

Purpose:

The aim of the current study was to determine whether the anaerobic performance assessed by a modified Wingate test could account for the 1,500-m rowing ergometer performance in young competitive rowers.

Methods:

Fourteen national-level adolescent rowers performed on a rowing ergometer i) a 30-s allout exercise (i.e., modified Wingate test) and ii) a 1,500-m all-out exercise (i.e., rowing performance). For each of these two exercises, the mean power output was considered as the main performance criterion (PWIN and P1500, respectively).

Results:

PWIN was correlated to P1500 (r 2 = .83, p < .0001, β = 100%). Furthermore, the estimated total muscle mass was correlated to PWIN and P1500 (r 2 = .72 and r 2 = .83, p < .0001, β = 100%, respectively). The allometric scaling also indicated that total muscle mass accounts 62% for the relationship between PWIN and P1500.

Conclusion:

Our results highlight the importance of considering the contribution of total muscle mass and anaerobic energy pathways to 1,500-m rowing performance in competitive adolescent rowers. Therefore, the modified Wingate test could be used by rowing coaches to potentially identify talented young rowers.

Restricted access

Kerry McGawley and Hans-Christer Holmberg

Purpose:

Cross-country-ski races place complex demands on athletes, with events lasting between approximately 3 min and 2 h. The aim of the current study was to compare the aerobic and anaerobic measures derived from a short time trial (TT) between male and female skiers using diagonal cross-country skiing.

Methods:

Twenty-four highly trained cross-country skiers (12 male and 12 female, age 17.4 ± 1.4 y, body mass 68.2 ± 8.9 kg, height 174 ± 8 cm) participated. The submaximal VO2–speed relationship and VO2max were derived from an incremental ramp test to exhaustion (RAMP), while the accumulated oxygen deficit (AOD), peak VO2, and performance time were measured during a 600-m TT.

Results:

The female skiers took longer to complete the TT than the males (209 ± 9 s vs 166 ± 7 s, P < .001) and exhibited a lower relative anaerobic contribution (20% ± 4% vs 24% ± 3%, P = .015) and a higher fractional utilization of VO2max (84% ± 4% vs 79% ± 5%, P = .007) than males. Although there was no significant difference in AOD between the sexes (40.9 ± 9.5 and 47.3 ± 7.4 mL/kg for females and males, respectively; P = .079), the mean difference ± 90% confidence intervals of 6.4 ± 6.0 mL/kg reflected a likely practical difference (ES = 0.72). The peak VO2 during the TT was significantly higher than VO2max during the RAMP for all participants combined (62.3 ± 6.8 vs 60.5 ± 7.2 mL · kg−1 · min−1, P = .011), and the mean difference ± 90% confidence intervals of 1.8 ± 1.1 mL · kg−1 · min−1 reflected a possible practical difference (ES = 0.25).

Conclusions:

These results show that performance and physiological responses to a self-paced TT lasting approximately 3 min differ between sexes. In addition, a TT may provide a valid measure of VO2max.

Restricted access

Erwan Leclair, Benoit Borel, Delphine Thevenet, Georges Baquet, Patrick Mucci and Serge Berthoin

This study first aimed to compare critical power (CP) and anaerobic work capacity (AWC), to laboratory standard evaluation methods such as maximal oxygen uptake (V̇O2max) and maximal accumulated oxygen deficit (MAOD). Secondly, this study compared child and adult CP and AWC values. Subjects performed a maximal graded test to determine V̇O2max and maximal aerobic power (MAP); and four constant load exercises. In children, CP (W.kg−1) was related to V̇O2max (ml.kg−1.min−1; r = .68; p = .004). AWC (J.kg−1) in children was related to MAOD (r = .58; p = .018). Children presented lower AWC (J.kg−1; p = .001) than adults, but similar CP (%MAP) values. CP (%MAP and W.kg−1) and AWC (J.kg−1) were significantly related to laboratory standard evaluation methods but low correlation indicated that they cannot be used interchangeably. CP (%MAP) was similar in children and adults, but AWC (J.kg−1) was significantly lower in children. These conclusions support existing knowledge related to child-adults characteristics.

Restricted access

Raffy Dotan

The multisession maximal lactate steady-state (MLSS) test is the gold standard for anaerobic threshold (AnT) estimation. However, it is highly impractical, requires high fitness level, and suffers additional shortcomings. Existing single-session AnT-estimating tests are of compromised validity, reliability, and resolution. The presented reverse lactate threshold test (RLT) is a single-session, AnT-estimating test, aimed at avoiding the pitfalls of existing tests. It is based on the novel concept of identifying blood lactate’s maximal appearance-disappearance equilibrium by approaching the AnT from higher, rather than from lower exercise intensities. Rowing, cycling, and running case data (4 recreational and competitive athletes, male and female, aged 17–39 y) are presented. Subjects performed the RLT test and, on a separate session, a single 30-min MLSS-type verification test at the RLT-determined intensity. The RLT and its MLSS verification exhibited exceptional agreement at 0.5% discrepancy or better. The RLT’s training sensitivity was demonstrated by a case of 2.5-mo training regimen following which the RLT’s 15-W improvement was fully MLSS-verified. The RLT’s test-retest reliability was examined in 10 trained and untrained subjects. Test 2 differed from test 1 by only 0.3% with an intraclass correlation of 0.997. The data suggest RLT to accurately and reliably estimate AnT (as represented by MLSS verification) with high resolution and in distinctly different sports and to be sensitive to training adaptations. Compared with MLSS, the single-session RLT is highly practical and its lower fitness requirements make it applicable to athletes and untrained individuals alike. Further research is needed to establish RLT’s validity and accuracy in larger samples.

Restricted access

David J Dominguese, Jeff Seegmiller and B. Andrew Krause

Context:

Lower extremity injury is prevalent among individuals participating in sports. Numerous variables have been reported as predisposing risk factors to injury; however, the effects of muscle fatigue on landing kinetics are unclear.

Objectives:

To investigate the effects of a single session of repeated muscle fatigue on peak vertical ground-reaction force (GRF) during drop landings.

Design:

Mixed factorial with repeated measures.

Setting:

Controlled laboratory.

Participants:

10 female and 10 male healthy recreational athletes.

Intervention:

Subjects performed 3 fatigued drop landings (60 cm) after four 20-s Wingate anaerobic tests (WATs) with 5 min of active recovery between fatigued conditions.

Main Outcome Measures:

Kinetic data of peak forefoot (F1) force, peak rear-foot (F2) force, and anteroposterior (AP) and mediolateral (ML) forces at both F1 and F2.

Results:

A significant main effect was observed in the nonfatigued and fatigued drop landings in respect to peak F2 force. The greatest significant difference was shown between the first fatigued drop-landing condition and the last fatigued drop-landing condition. No significant difference was observed between genders for all GRF variables across fatigue conditions.

Conclusion:

A single session of repeated conditions of anaerobic muscle fatigue induced by WATs caused an initial reduction in peak F2 force followed by an increase in peak F2 force across conditions. Muscle fatigue consequently alters landing kinetics, potentially increasing the risk of injury.

Restricted access

Leyre Gravina, Frankie F. Brown, Lee Alexander, James Dick, Gordon Bell, Oliver C. Witard and Stuart D.R. Galloway

Omega-3 fatty acid (n-3 FA) supplementation could promote adaptation to soccer-specific training. We examined the impact of a 4-week period of n-3 FA supplementation during training on adaptations in 1RM knee extensor strength, 20-m sprint speed, vertical jump power, and anaerobic endurance capacity (Yo-Yo test) in competitive soccer players. Twenty six soccer players were randomly assigned to one of two groups: n-3 FA supplementation (n-3 FA; n = 13) or placebo (n = 13). Both groups performed two experimental trial days. Assessments of physical function and respiratory function were conducted pre (PRE) and post (POST) supplementation. Training session intensity, competitive games and nutritional intake were monitored during the 4-week period. No differences were observed in respiratory measurements (FEV1, FVC) between groups. No main effect of treatment was observed for 1RM knee extensor strength, explosive leg power, or 20 m sprint performance, but strength improved as a result of the training period in both groups (p < .05). Yo-Yo test distance improved with training in the n-3 FA group only (p < .01). The mean difference (95% CI) in Yo-Yo test distance completed from PRE to POST was 203 (66–340) m for n-3 FA, and 62 (-94–217) m for placebo, with a moderate effect size (Cohen’s d of 0.52). We conclude that 4 weeks of n-3 FA supplementation does not improve strength, power or speed assessments in competitive soccer players. However, the increase in anaerobic endurance capacity evident only in the n-3 FA treatment group suggests an interaction that requires further study.

Restricted access

Bettina Karsten, Liesbeth Stevens, Mark Colpus, Eneko Larumbe-Zabala and Fernando Naclerio

Purpose:

To investigate the effects of a sport-specific maximal 6-wk strength and conditioning program on critical velocity (CV), anaerobic running distance (ARD), and 5-km time-trial performance (TT).

Methods:

16 moderately trained recreational endurance runners were tested for CV, ARD, and TT performances on 3 separate occasions (baseline, midstudy, and poststudy).

Design:

Participants were randomly allocated into a strength and conditioning group (S&C; n = 8) and a comparison endurance-trainingonly group (EO; n = 8). During the first phase of the study (6 wk), the S&C group performed concurrent maximal strength and endurance training, while the EO group performed endurance-only training. After the retest of all variables (midstudy), both groups subsequently, during phase 2, performed another 6 wk of endurance-only training that was followed by poststudy tests.

Results:

No significant change for CV was identified in either group. The S&C group demonstrated a significant decrease for ARD values after phases 1 and 2 of the study. TT performances were significantly different in the S&C group after the intervention, with a performance improvement of 3.62%. This performance increase returned close to baseline after the 6-wk endurance-only training.

Conclusion:

Combining a 6-wk resistance-training program with endurance training significantly improves 5-km TT performance. Removing strength training results in some loss of those performance improvements.

Restricted access

Carl M. Maresh, Lawrence E. Armstrong, Jay R. Hoffman, Daniel R. Hannon, Catherine L. V. Gabaree, Michael F. Bergeron, Michael J. Whittlesey and Michael R. Deschenes

In the present study, the effects of an increased daily dose of a dietary supplement (ATP-E, 0.2 g · kg1 · day1) on Wingate test performance were examined in 12 men (21 ± 1.6 years) prior to and following 14 days of supplement and placebo ingestion. A double-blind and counterbalanced design was used. Results revealed higher (p < .007) preexercise blood ATP (95.4 ± 10.5 μmol · dl1) for the entire group following 14 days of ATP-E ingestion compared to placebo measures (87.6 ± 10.9 μmol · dl1). Mean power (667 ± 73 W) was higher (p < .008) after 14 days of ATP-E ingestion versus placebo (619 ± 67 W). Peak plasma lactate was lower (p < .07) after 14 days of ATP-E ingestion (14.9 ± 2.8 mmol · L1) compared to placebo (16.3 ± 1.6 mmol · L1). These data suggested that the improvement in 30-s Wingate test performance in this group may be related to the increased dose of ATP-E.

Restricted access

Jason D. Vescovi, Olesya Falenchuk and Greg D. Wells

Purpose:

Blood lactate concentration, [BLa], after swimming events might be influenced by demographic features and characteristics of the swim race, whereas active recovery enhances blood lactate removal. Our aims were to (1) examine how sex, age, race distance, and swim stroke influenced [BLa] after competitive swimming events and (2) develop a practical model based on recovery swim distance to optimize blood lactate removal.

Methods:

We retrospectively analyzed postrace [BLa] from 100 swimmers who competed in the finals at the Canadian Swim Championships. [BLa] was also assessed repeatedly during the active recovery. Generalized estimating equations were used to evaluate the relationship between postrace [BLa] with independent variables.

Results:

Postrace [BLa] was highest following 100–200 m events and lowest after 50 and 1500 m races. A sex effect for postrace [BLa] was observed only for freestyle events. There was a negligible effect of age on postrace [BLa]. A model was developed to estimate an expected change in [BLa] during active recovery (male = 0; female = 1): [BLa] change after active recovery = –3.374 + (1.162 × sex) + (0.789 × postrace [BLa]) + (0.003 × active recovery distance).

Conclusions:

These findings indicate that swimmers competing at an elite standard display similar postrace [BLa] and that there is little effect of age on postrace [BLa] in competitive swimmers aged 14 to 29 y.