Search Results

You are looking at 61 - 70 of 949 items for :

  • "body composition" x
Clear All
Restricted access

Tibor Hortobágyi, Richard G. Israel, Joseph A. Houmard, Kevin F. O'Brien, Robert A. Johns and Jennifer M. Wells

Four methods of assessing body composition were compared in 55 black and 35 white, Division 1, American football players. Percent body fat (%BF) was estimated with hydrostatic weighing at residual volume, corrected for race; seven-site skinfolds (7 SF), corrected for race; bioelectrical impedance analysis (BIA); and near-infrared spectrophotometry (NIR). Percent body fat with HW in blacks (mean = 14.7%) and whites (19.7%) did not differ (P > .05) from %>BF with 7 SF (blacks, 14.7%; whites, 19.0%). In relation to HW, BIA significantly (P < .05) overpredicted (blacks: 20.1%, SEE = 3.2%; whites; 22.3%, SEE = 4.3%) and NiR underpredicted %BF (blacks; 12.6%, SEE = 3.9%; whites; 17.7%, SEE = 3.6%). The contribution of BIA variables (resistance, phase angle, conductance) and NIR optical density to predict %BF was trivial compared to body mass index. It appears that race may not substantially influence %BF prediction by NIR and BIA. It was concluded that when considering the cost and expertise required with NIR and BIA, SF measurements appear to be a superior alternative for rapid and accurate body composition assessment of athletes, independent of race.

Restricted access

Johann C. Bilsborough, Thomas Kempton, Kate Greenway, Justin Cordy and Aaron J. Coutts

Purpose:

To compare development and variations in body composition of early-, mid-, and late-career professional Australian Football (AF) players over 3 successive seasons.

Methods:

Regional and total-body composition (body mass [BM], fat mass [FM], fat-free soft-tissue mass [FFSTM], and bone mineral content [BMC]) were assessed 4 times, at the same time of each season—start preseason (SP), end preseason (EP), midseason (MS), and end season (ES)—from 22 professional AF players using pencil-beam dual-energy X-ray absorptiometry. Nutritional intake for each player was evaluated concomitantly using 3-d food diaries. Players were classified according to their age at the beginning of the observational period as either early- (<21 y, n = 8), mid- (21 to 25 y, n = 9), or late- (>25 y, n = 5) career athletes.

Results:

Early-career players had lower FFSTM, BMC, and BM than mid- and late-career throughout. FM and %FM had greatest variability, particularly in the early-career players. FM reduced and FFSTM increased from SP to EP, while FM and FFSTM decreased from EP to MS. FM increased and FFSTM decreased from MS to ES, while FM and FFSTM increased during the off-season.

Conclusions:

Early-career players may benefit from greater emphasis on specific nutrition and resistance-training strategies aimed at increasing FFSTM, while all players should balance training and diet toward the end of season to minimize increases in FM.

Restricted access

Jace A. Delaney, Heidi R. Thornton, Tannath J. Scott, David A. Ballard, Grant M. Duthie, Lisa G. Wood and Ben J. Dascombe

High levels of lean mass are important in collision-based sports for the development of strength and power, which may also assist during contact situations. While skinfold-based measures have been shown to be appropriate for cross-sectional assessments of body composition, their utility in tracking changes in lean mass is less clear.

Purpose:

To determine the most effective method of quantifying changes in lean mass in rugby league athletes.

Methods:

Body composition of 21 professional rugby league players was assessed on 2 or 3 occasions separated by ≥6 wk, including bioelectrical impedance analysis (BIA), leanmass index (LMI), and a skinfold-based prediction equation (SkF). Dual-X-ray absorptiometry provided a criterion measure of fat-free mass (FFM). Correlation coefficients (r) and standard errors of the estimate (SEE) were used as measures of validity for the estimates.

Results:

All 3 practical estimates exhibited strong validity for cross-sectional assessments of FFM (r > .9, P < .001). The correlation between change scores was stronger for the LMI (r = .69, SEE 1.3 kg) and the SkF method (r = .66, SEE = 1.4 kg) than for BIA (r = .50, SEE = 1.6 kg).

Conclusions:

The LMI is probably as accurate in predicting changes in FFM as SkF and very likely to be more appropriate than BIA. The LMI offers an adequate, practical alternative for assessing in FFM among rugby league athletes.

Restricted access

Heidi L. Petersen, C. Ted Peterson, Manju B. Reddy, Kathy B. Hanson, James H. Swain, Rick L. Sharp and D. Lee Alekel

This study determined the effect of training on body composition, dietary intake, and iron status of eumenorrheic female collegiate swimmers (n = 18) and divers (n = 6) preseason and after 16 wk of training. Athletes trained on dryland (resistance, strength, fexibility) 3 d/wk, 1.5 h/d and in-water 6 d/wk, nine, 2-h sessions per week (6400 to 10,000 kJ/d). Body-mass index (kg/m2; P = 0.05), waist and hip circumferences (P ≤ 0.0001), whole body fat mass (P = 0.0002), and percentage body fat (P ≤ 0.0001) decreased, whereas lean mass increased (P = 0.028). Using dual-energy X-ray absorptiometry, we found no change in regional lean mass, but fat decreased at the waist (P = 0.0002), hip (P = 0.0002), and thigh (P = 0.002). Energy intake (10,061 ± 3617 kJ/d) did not change, but dietary quality improved with training, as refected by increased intakes of fber (P = 0.036), iron (P = 0.015), vitamin C (P = 0.029), vitamin B-6 (P = 0.032), and fruit (P = 0.003). Iron status improved as refected by slight increases in hemoglobin (P = 0.046) and hematocrit (P = 0.014) and decreases in serum transferrin receptor (P ≤ 0.0001). Studies are needed to further evaluate body composition and iron status in relation to dietary intake in female swimmers.

Restricted access

Martin Mooses and Anthony C. Hackney

Maximal oxygen uptake (V̇O2max), fractional utilization of V̇O2max during running, and running economy (RE) are crucial factors for running success for all endurance athletes. Although evidence is limited, investigations of these key factors indicate that East Africans’ superiority in distance running is largely due to a unique combination of these factors. East African runners appear to have a very high level of RE most likely associated, at least partly, with anthropometric characteristics rather than with any specific metabolic property of the working muscle. That is, evidence suggest that anthropometrics and body composition might have important parameters as determinants of superior performance of East African distance runners. Regrettably, this role is often overlooked and mentioned as a descriptive parameter rather than an explanatory parameter in many research studies. This brief review article provides an overview of the evidence to support the critical role anthropometrics and body composition has on the distance running success of East African athletes. The structural form and shape of these athletes also has a downside, because having very low BMI or body fat increases the risk for relative energy deficiency in sport (RED-S) conditions in both male and female runners, which can have serious health consequences.

Restricted access

Alisa Nana, Gary J. Slater, Arthur D. Stewart and Louise M. Burke

Dual energy X-ray absorptiometry (DXA) is rapidly becoming more accessible and popular as a technique to monitor body composition, especially in athletic populations. Although studies in sedentary populations have investigated the validity of DXA assessment of body composition, few studies have examined the issues of reliability in athletic populations and most studies which involve DXA measurements of body composition provide little information on their scanning protocols. This review presents a summary of the sources of error and variability in the measurement of body composition by DXA, and develops a theoretical model of best practice to standardize the conduct and analysis of a DXA scan. Components of this protocol include standardization of subject presentation (subjects rested, overnight-fasted and in minimal clothing) and positioning on the scanning bed (centrally aligned in a standard position using custom-made positioning aids) as well as manipulation of the automatic segmentation of regional areas of the scan results. Body composition assessment implemented with such protocol ensures a high level of precision, while still being practical in an athletic setting. This ensures that any small changes in body composition are confidently detected and correctly interpreted. The reporting requirements for studies involving DXA scans of body composition include details of the DXA machine and software, subject presentation and positioning protocols, and analysis protocols.

Restricted access

Robert H. DuRant, William O. Thompson, Maribeth Johnson and Tom Baranowski

This follow-up investigation examined the relationship among observed time of television watching, physical activity, and body composition in 5- to 6-year-old children previously studied 2 years ago. Activity level on school and nonschool days was measured with the Children’s Activity Rating Scale. Television watching time was assessed by direct observation, and body composition was measured with the body mass index, skinfold thicknesses, and waist/hip ratio. Television watching behavior, which increased from the earlier study, was not associated with body composition. Physical activity was lower during television watching than nontelevision watching time.

Restricted access

Manny Felix, Jeff McCubbin and Janet Shaw

Many women with mild to moderate mental retardation (MMR) exhibit low levels of physical activity, muscle strength, and muscle mass, which place these individuals at risk for osteoporosis. Bone mineral density (BMD), the primary index of osteoporosis, of the femoral neck and the whole body was measured in premenopausal women with (M age = 28.14 ± 8.43) and without (M age = 29.64 ± 10.86) mental retardation (MMR and NMR, respectively). Multivariate analyses revealed no differences (p > .05) between groups (MMR = 16, NMR = 16) for BMD values. Significant differences existed (p < .05) between groups on body composition and muscle strength variables. In the MMR group, significant positive relationships (p < .05) were found between lean muscle mass and both femoral neck (r = .74) and whole body (r = .81) BMD. Unaccounted lifestyle factors may have contributed to nonsignificant BMD values between groups.

Restricted access

Phillip C. Usera, John T. Foley and Joonkoo Yun

The purpose of this study was to cross-validate skinfold and anthropometric measurements for individuals with Down syndrome (DS). Estimated body fat of 14 individuals with DS and 13 individuals without DS was compared between criterion measurement (BOP POD®) and three prediction equations. Correlations between criterion and field-based tests for non-DS group and DS groups ranged from .81 – .94 and .11 – .54, respectively. Root-Mean-Squared-Error was employed to examine the amount of error on the field-based measurements. A MANOVA indicated significant differences in accuracy between groups for Jackson’s equation and Lohman’s equation. Based on the results, efforts should now be directed toward developing new equations that can assess the body composition of individuals with DS in a clinically feasible way.

Restricted access

Emmanuel Van Praagh, Nicole Fellmann, Mario Bedu, Guy Falgairette and Jean Coudert

This study was done to determine the extent to which body composition accounts for differences in anaerobic characteristics between 12-year-old girls and boys. Peak leg power (PP), mean leg power (MP), percent body fat, fat free mass (FFM), and lean thigh volume (LTV) were determined by various tests. Pubertal stages and salivary testosterone concentration (in boys) were used to assess sexual maturation. Laboratory anaerobic indices were compared with performances in two running tests. Blood samples were taken for lactate determination. Absolute PP and MP outputs were similar in both sexes and were better correlated with LTV in girls, whereas in boys both PP and MP were highly correlated with FFM. Although nonsignificant gender difference in lean tissue was observed, PP and MP when corrected for LTV were significantly greater in boys than in girls. Factors other than the amount of lean muscle mass should be considered in explaining the gender differences in PP and MP in early pubertal children.