Search Results

You are looking at 61 - 70 of 182 items for :

  • "calorimetry" x
Clear All
Restricted access

Orjan Ekblom, Gisela Nyberg, Elin Ekblom Bak, Ulf Ekelund and Claude Marcus

Background:

Wrist-worn accelerometers may provide an alternative to hip-worn monitors for assessing physical activity as they are easier to wear and may thus facilitate long-term recordings. The current study aimed at a) assessing the validity of the Actiwatch (wrist-worn) for estimating energy expenditure, b) determining cut-off values for light, moderate, and vigorous activities, c) studying the comparability between the Actiwatch and the Actigraph (hip-worn), and d) assessing reliability.

Methods:

For validity, indirect calorimetry was used as criterion measure. ROC-analyses were applied to identify cut-off values. Comparability was tested by simultaneously wearing of the 2 accelerometers during free-living condition. Reliability was tested in a mechanical shaker.

Results:

All-over correlation between accelerometer output and energy expenditure were found to be 0.80 (P < .001).Based on ROC-analysis, cut-off values for 1.5, 3, and 6 METs were found to be 80, 262, and 406 counts per 15 s, respectively. Energy expenditure estimates differed between the Actiwatch and the Actigraph (P < .05). The intra- and interinstrument coefficient of variation of the Actiwatch ranged between 0.72% and 8.4%.

Conclusion:

The wrist-worn Actiwatch appears to be valid and reliable for estimating energy expenditure and physical activity intensity in children aged 8 to 10 years.

Restricted access

Daniel Arvidsson, Mark Fitch, Mark L. Hudes and Sharon E. Fleming

Background:

Overweight children show different movement patterns during walking than normal-weight children, suggesting the accuracy of multisensory activity monitors may differ in these groups.

Methods:

Eleven normal and 15 high BMI African American children walked at 2, 4, 5, and 6 km/h on a treadmill wearing the Intelligent Device for Energy Expenditure and Activity (IDEEA) and SenseWear (SW). Accuracy was determined using indirect calorimetry and manually counted steps as references.

Results:

For IDEEA, no significant differences in accuracy were observed between BMI groups for energy expenditure (EE), but differences were significant by speed (+15% at 2 km/h to −10% at 6 km/h). For SW, EE accuracy was significantly different for high (+21%) versus normal BMI girls (−13%) at 2 km/h. For high BMI girls, EE was overestimated at low speed and underestimated at higher speeds. Underestimations in steps did not differ by BMI group at 4 to 6 km/h, but were significantly larger at 2 km/h than at the other speeds for all groups with IDEEA, and for normal BMI children with SW.

Conclusions:

Similar accuracies during walking may be expected in normal and overweight children using IDEEA and SW. Both monitors showed small errors for steps provided speed exceeded 2 km/h.

Restricted access

Steven K. Malin, Brooke R. Stephens, Carrie G. Sharoff, Todd A. Hagobian, Stuart R. Chipkin and Barry Braun

Exercise and metformin may prevent or delay Type 2 diabetes by, in part, raising the capacity for fat oxidation. Whether the addition of metformin has additive effects on fat oxidation during and after exercise is unknown. Therefore, the purpose of this study was to evaluate the effect of metformin on substrate oxidation during and after exercise. Using a double-blind, counter-balanced crossover design, substrate oxidation was assessed by indirect calorimetry in 15 individuals taking metformin (2,000 mg/d) and placebo for 8–10 d. Measurements were made during cycle exercise at 5 submaximal cycle workloads, starting at 30% peak work (Wpeak) and increasing by 10% every 8 min to 70% Wpeak. Substrate oxidation was also measured for 50 min postexercise. Differences between conditions were assessed using analysis of variance with repeated measures, and values are reported as M ± SE. During exercise, fat oxidation (0.19 ± 0.03 vs. 0.15 ± 0.01 g/min, p < .01) and percentage of energy from fat (32% ± 3% vs. 28% ± 3%, p < .01) were higher with metformin than with placebo. Postexercise, metformin slightly lowered fat oxidation (0.12 ± 0.02 to 0.10 ± 0.02 g/min, p < .01) compared with placebo. There was an inverse relationship between postexercise fat oxidation and the rate of fat oxidation during exercise (r = –.68, p < .05). In healthy individuals, metformin has opposing actions on fat oxidation during and after exercise. Whether the same effects are evident in insulin-resistant individuals remains to be determined.

Restricted access

Sofiya Alhassan, Kate Lyden, Cheryl Howe, Sarah Kozey Keadle, Ogechi Nwaokelemeh and Patty S. Freedson

This study examined the validity of commonly used regression equations for the Actigraph and Actical accelerometers in predicting energy expenditure (EE) in children and adolescents. Sixty healthy (8–16 yrs) participants completed four treadmill (TM) and five self-paced activities of daily living (ADL). Four Actigraph (AG) and three Actical (AC) regression equations were used to estimate EE. Bias (±95% CI) and root mean squared errors were used to assess the validity of the regression equations compared with indirect calorimetry. For children, the Freedson (AG) model accurately predicted EE for all activities combined and the Treuth (AG) model accurately predicted EE for TM activities. For adolescents, the Freedson model accurately predicted EE for TM activities and the Treuth model accurately predicted EE for all activities and for TM activities. No other equation accurately estimated EE. The percent agreement for the AG and AC equations were better for light and vigorous compared with moderate intensity activities. The Trost (AG) equation most accurately classified all activity intensity categories. Overall, equations yield inconsistent point estimates of EE.

Restricted access

Claudia Ridel Juzwiak, Ciro Winckler, Daniel Paduan Joaquim, Andressa Silva and Marco Tulio de Mello

To compare basal metabolic rate (BMR) predicted by different equations with measured BMR of the Brazilian paralympic track & field team aiming to verify which of these equations is best suited for use in this group. Method: 19 male and 11 female athletes grouped according to functional classification (vision impairment-VI, limb deficiency-LD, and cerebral palsy-CP) had their BMR measured by indirect calorimetry and compared with values predicted by different equations: Cunningham, Owen, Harris-Benedict, FAO/OMS, Dietary Reference Intakes, and Mifflin. Body composition data were obtained by skinfold measurements. Results were reported as mean and standard deviation and analyzed using the Wilcoxon test and Pearson´s Correlation Coefficient. The Root Mean Squared Prediction Error (RMSPE) was calculated to identify the similarity between the estimated and predicted BMR. Results: Mean measured BMR was 25 ± 4.2, 26 ± 2.4, and 26 ± 2.7 kcal/kg of fat free mass/day for VI, LD, and CP, respectively. Owen´s equation had the best predictive performance in comparison with measured BMR for LD and CP athletes, within 104 and 125 kcal/day, while Mifflin’s equation predicted within 146 kcal/day for VI athletes. Conclusion: for this specific group of athletes the Owen and Mifflin equations provided the best predictions of BMR.

Restricted access

Kathryn H. Myburgh, Claire Berman, Illana Novick, Timothy D. Noakes and Estelle V. Lambert

We studied 21 ballet dancers aged 19.4 ± 1.4 years, hypothesizing that undernu-trition was a major factor in menstrual irregularity in this population. Menstrual history was determined by questionnaire. Eight dancers had always been regular (R). Thirteen subjects had a history of menstrual irregularity (HI). Of these, 2 were currently regularly menstruating, 3 had short cycles, 6 were oligomenorrheic, and 2 were amenorrheic. Subjects completed a weighed dietary record and an Eating Attitudes Test (EAT). The following physiological parameters were measured: body composition by anthropometry, resting metabolic rate (RMR) by open-circuit indirect calorimetry, and serum thyroid hormone concentrations by radioimmunoassay. R subjects had significantly higher RMR than HI subjects. Also, HI subjects had lower RMR than predicted by fat-free mass, compared to the R subjects. Neitherreported energy intake nor serum thyroid hormone concentrations were different between R and HI subjects. EAT scores varied and were not different between groups. We concluded that in ballet dancers, low RMR is more strongly associated with menstrual irregularity than is currentreported energy intake or serum thyroid hormone concentrations.

Restricted access

Mathieu L. Maltais, Karine Perreault, Alexandre Courchesne-Loyer, Jean-Christophe Lagacé, Razieh Barsalani and Isabelle J. Dionne

The decrease in resting energy expenditure (REE) and fat oxidation with aging is associated with an increase in fat mass (FM), and both could be prevented by exercise such as resistance training. Dairy consumption has also been shown to promote FM loss in different subpopulations and to be positively associated with fat oxidation. Therefore, we sought to determine whether resistance exercise combined with dairy supplementation could have an additive impact on FM and energy metabolism, especially in individuals with a deficit in muscle mass. Twenty-six older overweight sarcopenic men (65 ± 5 years old) were recruited for the study. They participated in 4 months of resistance exercise and were randomized into three groups for postexercise shakes (control, dairy, and nondairy isocaloric and isoprotein supplement with 375 ml and ~280 calories per shake). Body composition was measured by dual X-ray absorptiometry and REE by indirect calorimetry. Fasting glucose, insulin, leptin, inflammatory profile, and blood lipid profile were also measured. Significant decreases were observed with FM only in the dairy supplement group; no changes were observed for any other variables. To conclude, FM may decrease without changes in metabolic parameters during resistance training and dairy supplementation with no caloric restriction without having any impact on metabolic properties. More studies are warranted to explain this significant decrease in FM.

Restricted access

Deirdre M. Harrington, Kieran P. Dowd, Catrine Tudor-Locke and Alan E. Donnelly

The number of steps/minute (i.e., cadence) that equates to moderate intensity in adolescents is not known. To that end, 31 adolescent females walked on a treadmill at 5 different speeds while wearing an ActivPAL accelerometer and oxygen uptake was recorded by indirect calorimetry. The relationship between metabolic equivalents (METs) and cadence was explored using 3 different analytical approaches. Cadence was a significant predictor of METs (r=.70; p<.001). Moderate intensity (3 METs) corresponded to 94 or 114 steps/minute based on the mixed model and ROC analysis, respectively. These two values, and a practical value of 100 steps/minute, were cross-validated on an independent sample of 33 adolescent females during over-ground walking at 3 speeds. The sensitivity and specificity of each value correctly identifying 3 METs were 98.5% and 87.2% for 94 steps/minute, 72.9% and 98.8 for 114 steps/minute and 96.5% and 95.7% for 100 steps/minute. Compromising on a single cadence of 100 steps/minute would be a practical value that approximates moderate intensity in adolescent females and can be used for physical activity interpretation and promotion.

Restricted access

John S. Cuddy, Dustin R. Slivka, Walter S. Hailes, Charles L. Dumke and Brent C. Ruby

Purpose:

The purpose of this study was to determine the metabolic profile during the 2006 Ironman World Championship in Kailua-Kona, Hawaii.

Methods:

One recreational male triathlete completed the race in 10:40:16. Before the race, linear regression models were established from both laboratory and feld measures to estimate energy expenditure and substrate utilization. The subject was provided with an oral dose of 2H2 18O approximately 64 h before the race to calculate total energy expenditure (TEE) and water turnover with the doubly labeled water (DLW) technique. Body weight, blood sodium and hematocrit, and muscle glycogen (via muscle biopsy) were analyzed pre- and postrace.

Results:

The TEE from DLW and indirect calorimetry was similar: 37.3 MJ (8,926 kcal) and 37.8 MJ (9,029 kcal), respectively. Total body water turnover was 16.6 L, and body weight decreased 5.9 kg. Hematocrit increased from 46 to 51% PCV. Muscle glycogen decreased from 152 to 48 mmoL/kg wet weight pre- to postrace.

Conclusion:

These data demonstrate the unique physiological demands of the Ironman World Championship and should be considered by athletes and coaches to prepare sufficient nutritional and hydration plans.

Restricted access

John M. Schuna Jr., Daniel S. Hsia, Catrine Tudor-Locke and Neil M. Johannsen

Background: Active workstations offer the potential for augmenting energy expenditure (EE) in sedentary occupations. However, comparisons of EE during pedal and treadmill desk usage at self-selected intensities are lacking. Methods: A sample of 16 adult participants (8 men and 8 women; 33.9 [7.1] y, 22.5 [2.7] kg/m2) employed in sedentary occupations had their EE measured using indirect calorimetry during 4 conditions: (1) seated rest, (2) seated typing in a traditional office chair, (3) self-paced pedaling on a pedal desk while typing, and (4) self-paced walking on a treadmill desk while typing. Results: For men and women, self-paced pedal and treadmill desk typing significantly increased EE above seated typing (pedal desk: +1.20 to 1.28 kcal/min and treadmill desk: +1.43 to 1.93 kcal/min, P < .001). In men, treadmill desk typing (3.46 [0.19] kcal/min) elicited a significantly higher mean EE than pedal desk typing (2.73 [0.21] kcal/min, P < .001). No significant difference in EE was observed between treadmill desk typing (2.68 [0.19] kcal/min) and pedal desk typing among women (2.52 [0.21] kcal/min). Conclusions: Self-paced treadmill desk usage elicited significantly higher EE than self-paced pedal desk usage in men but not in women. Both pedal and treadmill desk usage at self-selected intensities elicited approximate 2-fold increases in EE above what would typically be expected during traditional seated office work.