Search Results

You are looking at 61 - 70 of 623 items for :

  • "cognition" x
  • Psychology and Behavior in Sport/Exercise x
Clear All
Restricted access

Sandra A. Billinger, Eric D. Vidoni, Jill K. Morris, John P. Thyfault and Jeffrey M. Burns

Positive physiologic and cognitive responses to aerobic exercise have resulted in a proposed cardiorespiratory (CR) fitness hypothesis in which fitness gains drive changes leading to cognitive benefit. The purpose of this study was to directly assess the CR fitness hypothesis. Using data from an aerobic exercise trial, we examined individuals who completed cardiopulmonary and cognitive testing at baseline and 26 weeks. Change in cognitive test performance was not related to CR fitness change (r 2 = .06, p = .06). However, in the subset of individuals who gave excellent effort during exercise testing, change in cognitive test performance was related to CR fitness change (r 2 = .33, p < .01). This was largely due to change in the cognitive domain of attention (r 2 = .36, p < .01). The magnitude of change was not explained by duration of exercise. Our findings support further investigation of the CR fitness hypothesis and mechanisms by which physiologic adaptation may drive cognitive change.

Restricted access

Angela L. Ridgel, Chul-Ho Kim, Emily J. Fickes, Matthew D. Muller and Jay L. Alberts

Individuals with Parkinson’s disease (PD) often experience cognitive declines. Although pharmacologic therapies are helpful in treating motor deficits in PD, they do not appear to be effective for cognitive complications. Acute bouts of moderate aerobic exercise have been shown to improve cognitive function in healthy adults. However, individuals with PD often have difficulty with exercise. This study examined the effects of passive leg cycling on executive function in PD. Executive function was assessed with Trail-Making Test (TMT) A and B before and after passive leg cycling. Significant improvements on the TMT-B test occurred after passive leg cycling. Furthermore, the difference between times to complete the TMT-B and TMT-A significantly decreased from precycling to postcycling. Improved executive function after passive cycling may be a result of increases in cerebral blood flow. These findings suggest that passive exercise could be a concurrent therapy for cognitive decline in PD.

Restricted access

John R. Biggan, Forest Melton, Michael A. Horvat, Mark Ricard, David Keller and Christopher T. Ray

The understanding of prefrail and nonfrail older adults’ postural control with and without increased environmental and cognitive stress is imperative to the development of targeted interventions to decrease fall risk within these populations. Thirty-eight individuals participated in this study. Postural control testing included the Sensory Organization Test (SOT) on a NeuroCom EquiTest. Cognitive and environmental load testing was performed during Condition 6 of the SOT. Though there were no group differences on composite equilibrium score (p = .06), the cognitive task (Stroop task) impaired equilibrium scores more than the auditory or visual distracter tasks (p < .05 and p < .01) for both groups. These results suggest that both prefrail and nonfrail older adults’ postural control is reduced in demanding environments. Given these findings, the need for multimodal exercise interventions to target both physical and cognitive factors is apparent.

Restricted access

Christopher J. Brush, Ryan L. Olson, Peter J. Ehmann, Steven Osovsky and Brandon L. Alderman

The purpose of this study was to examine possible dose–response and time course effects of an acute bout of resistance exercise on the core executive functions of inhibition, working memory, and cognitive flexibility. Twenty-eight participants (14 female; M age = 20.5 ± 2.1 years) completed a control condition and resistance exercise bouts performed at 40%, 70%, and 100% of their individual 10-repetition maximum. An executive function test battery was administered at 15 min and 180 min postexercise to assess immediate and delayed effects of exercise on executive functioning. At 15 min postexercise, high-intensity exercise resulted in less interference and improved reaction time (RT) for the Stroop task, while at 180 min low- and moderate-intensity exercise resulted in improved performance on plus–minus and Simon tasks, respectively. These findings suggest a limited and task-specific influence of acute resistance exercise on executive function in healthy young adults.

Restricted access

Philip D. Tomporowski, Catherine L. Davis, Kate Lambourne, Mathew Gregoski and Joseph Tkacz

The short-term aftereffects of a bout of moderate aerobic exercise were hypothesized to facilitate children’s executive functioning as measured by a visual task-switching test. Sixty-nine children (mean age = 9.2 years) who were overweight and inactive performed a category-decision task before and immediately following a 23-min bout of treadmill walking and, on another session, before and following a nonexercise period. The acute bout of physical activity did not influence the children’s global switch cost scores or error rates. Age-related differences in global switch cost scores, but not error scores, were obtained. These results, in concert with several studies conducted with adults, fail to confirm that single bouts of moderately intense physical activity influence mental processes involved in task switching.

Restricted access

Chun-Chih Wang, Chien-Heng Chu, I-Hua Chu, Kuei-Hui Chan and Yu-Kai Chang

This study was designed to examine the modulation of executive functions during acute exercise and to determine whether exercise intensity moderates this relationship. Eighty college-aged adults were recruited and randomly assigned into one of the four following groups: control, 30%, 50%, and 80% heart rate reserve. The Wisconsin Card Sorting Test (WCST) was administered during each intervention. The results indicated that the majority of the WCST performances were impaired in the high exercise intensity group relative to those of the other three groups, whereas similar performance rates were maintained in the low- and moderate-intensity groups. These findings suggest that transient hypofrontality occurs during high-intensity exercise, but not during low- and moderate-intensity exercises. Future research aimed at employing the dual-mode theory, and applying the reticular-activating hypofrontality model is recommended to further the current knowledge.

Restricted access

Yu-Kai Chang and Jennifer L. Etnier

The purpose of this study was to explore the dose-response relationship between resistance exercise intensity and cognitive performance. Sixty-eight participants were randomly assigned into control, 40%, 70%, or 100% of 10-repetition maximal resistance exercise groups. Participants were tested on Day 1 (baseline) and on Day 2 (measures were taken relative to performance of the treatment). Heart rate, ratings of perceived exertion, self-reported arousal, and affect were assessed on both days. Cognitive performance was assessed on Day 1 and before and following treatment on Day 2. Results from regression analyses indicated that there is a significant linear effect of exercise intensity on information processing speed, and a significant quadratic trend for exercise intensity on executive function. Thus, there is a dose-response relationship between the intensity of resistance exercise and cognitive performance such that high-intensity exercise benefits speed of processing, but moderate intensity exercise is most beneficial for executive function.

Restricted access

Arthur D. Fisk and Wendy A. Rogers

Two important questions are addressed in this article. The first concerns whether performance of well-learned skills is maintained as individuals grow older. The second question concerns whether older adults are able to acquire new skills. The answer to both questions is “yes”; however, the acquisition rate and the final performance level for newly acquired skills is generally less for older adults than for younger adults. The article resolves an apparent puzzle of how it is that older adults are capable of successful performance of everyday activities, given noted declines in cognitive-ability-type tasks shown for performance in laboratory studies. A brief discussion of age-related training strategies to enhance skill learning is provided.

Restricted access

Christiano Robles Rodrigues Alves, Bruno Gualano, Pollyana Pereira Takao, Paula Avakian, Rafael Mistura Fernandes, Diego Morine and Monica Yuri Takito

The aim of this study was to compare the effects of acute aerobic and strength exercises on selected executive functions. A counterbalanced, crossover, randomized trial was performed. Forty-two healthy women were randomly submitted to three different conditions: (1) aerobic exercise, (2) strength exercise, and (3) control condition. Before and after each condition, executive functions were measured by the Stroop Test and the Trail Making Test. Following the aerobic and strength sessions, the time to complete the Stroop “non-color word” and “color word” condition was lower when compared with that of the control session. The performance in the Trail Making Test was unchanged. In conclusion, both acute aerobic and strength exercises improve the executive functions. Nevertheless, this positive effect seems to be task and executive function dependent.

Restricted access

Kara K. Palmer, Matthew W. Miller and Leah E. Robinson

A growing body of research has illuminated beneficial effects of a single bout of physical activity (i.e., acute exercise) on cognitive function in school-age children. However, the influence of acute exercise on preschoolers’ cognitive function has not been reported. To address this shortcoming, the current study examined the effects of a 30-min bout of exercise on preschoolers’ cognitive function. Preschoolers’ cognitive function was assessed following a single bout of exercise and a single sedentary period. Results revealed that, after engaging in a bout of exercise, preschoolers exhibited markedly better ability to sustain attention, relative to after being sedentary (p = .006, partial eta square = .400). Based on these findings, providing exercise opportunities appears to enhance preschoolers’ cognitive function.