Search Results

You are looking at 61 - 70 of 2,429 items for :

Clear All
Restricted access

Nobuyuki Inui and Yumi Katsura

We conducted an experiment to examine age-related differences in the control of force and timing in a finger-tapping sequence with an attenuated-force tap. Participants between 7 and 20 years old tapped on a load cell with feedback on practice trials. They were required to recall the force pattern (300 g, 300 g, 300 g, 100 g) and the intertap interval (400 ms) without feedback on test trials. Analysis indicated that the last attenuated tap affected the first three taps of the tapping sequence in adults and adolescents but not in children. Adults and adolescents appeared to respond with four taps as a chunk, resulting in a contextual effect on the timing of force control, but younger children had difficulty with such chunking. Further, adults and adolescents were able to more accurately produce individual force magnitudes to match target magnitudes than younger children. For the ratio of force in serial positions 1:4, 2:4, and 3:4, consequently, 7- to 8-year-old children had lower ratios than the other age groups. Although there was no difference among age groups for timing control of peak force to press duration as a control strategy of force, 7- to 8-year-old children spent more time to produce force than the other age groups. Peak force with a decreased force was more variable in the attenuated force serial position (4) than in the other serial positions in all five age groups. Peak force variability was particularly robust in younger children. These findings suggest that younger children have difficulty with both temporal and spatial (i.e., magnitude) components of force control.

Restricted access

Sarah M. Coppola, Philippe C. Dixon, Boyi Hu, Michael Y.C. Lin and Jack T. Dennerlein

comparing external tablet keyboard attachments with the no-travel, on-screen keyboards have demonstrated better performance with attached keyboard use. 2 , 3 However, the effects of these new short-travel key designs on upper-extremity muscle activity and typing force are unknown. Keyboard design

Restricted access

Toshimasa Yanai, Akifumi Matsuo, Akira Maeda, Hiroki Nakamoto, Mirai Mizutani, Hiroaki Kanehisa and Tetsuo Fukunaga

leg at landing through ball release, 1 , 3 and increased elbow valgus load. 1 , 2 , 4 These observations suggest that the pitching technique used in baseball is a form of throwing uniquely adapted to the height and slope of the mound. Being the only source of external force that could translate the

Restricted access

Ramón Marcote-Pequeño, Amador García-Ramos, Víctor Cuadrado-Peñafiel, Jorge M. González-Hernández, Miguel Ángel Gómez and Pedro Jiménez-Reyes

linear sprint). Jump height and sprint time are the 2 performance variables most commonly used to evaluate vertical jump and linear sprint capabilities, respectively. 10 , 11 However, a new testing methodology based on the force–velocity (FV) relationship has recently emerged with the expectation of

Restricted access

Prue Cormie, Jeffrey M. McBride and Grant O. McCaulley

The objective of this study was to investigate the validity of power measurement techniques utilizing various kinematic and kinetic devices during the jump squat (JS), squat (S) and power clean (PC). Ten Division I male athletes were assessed for power output across various intensities: 0, 12, 27, 42, 56, 71, and 85% of one repetition maximum strength (1RM) in the JS and S and 30, 40, 50, 60, 70, 80, and 90% of 1RM in the PC. During the execution of each lift, six different data collection systems were utilized; (1) one linear position transducer (1-LPT); (2) one linear position transducer with the system mass representing the force (1-LPT+MASS); (3) two linear position transducers (2-LPT); (4) the force plate (FP); (5) one linear position transducer and a force plate (1-LPT+FP); (6) two linear position transducers and a force place (2-LPT+FP). Kinetic and kinematic variables calculated using the six methodologies were compared. Vertical power, force, and velocity differed significantly between 2-LPT+FP and 1-LPT, 1-LPT+MASS, 2-LPT, and FP methodologies across various intensities throughout the JS, S, and PC. These differences affected the load–power relationship and resulted in the transfer of the optimal load to a number of different intensities. This examination clearly indicates that data collection and analysis procedures influence the power output calculated as well as the load–power relationship of dynamic lower body movements.

Restricted access

Caroline Lisee, Tom Birchmeier, Arthur Yan, Brent Geers, Kaitlin O’Hagan, Callum Davis and Christopher Kuenze

ACL injury associated with common sport-related tasks. Kinetic variables, such as peak vertical ground reaction force (vGRF), and linear loading rates provide key insights into the characteristics of forces acting on the body as well as an individual’s response to these forces during functional tasks

Restricted access

Nicole A. Dinn and David G. Behm

Purpose:

Studies have both supported and refuted the concept that it is the intent to perform ballistic contractions that determines velocity-specific gains in resistance training. The purpose of this investigation was to determine whether ballistic intent is as effective as ballistic movement in improving muscle activation, force, movement time, and reaction time.

Methods:

Subjects completed 8 wk of punch training. A dynamic (DYN) group trained with elastic resistance bands, and the isometric (ISO) group trained with an unyielding strap. A control (CTRL) group was also tested. Pretesting and posttesting measures included isometric force; electromyography (EMG) of triceps, biceps, pectoralis major, and latissimus dorsi; movement and reaction time of both arms; and a quick-hands test of coordination.

Results:

Triceps iEMG increased by 63% in the ISO group (P = .03). Pectoralis major iEMG increased by 65% in the DYN group (P = .007). Movement time decreased 17.6% in the DYN training group (P = .001). Isometric force did not improve in either training group or in the CTRL group.

Conclusions:

Because of its specificity of movement, dynamic training might be a more appropriate method to improve punching speed for martial artists and boxers. The intent to contract explosively over a short duration does not appear to be beneficial in increasing force production or speed of movement in punching.

Restricted access

Jeni R. McNeal, William A. Sands and Michael H. Stone

Purpose:

The aim of this study was to investigate the effects of a maximal repeated-jumps task on force production, muscle activation and kinematics, and to determine if changes in performance were dependent on gender.

Methods:

Eleven male and nine female athletes performed continuous countermovement jumps for 60 s on a force platform while muscle activation was assessed using surface electromyography. Performances were videotaped and digitized (60 Hz). Data were averaged across three jumps in 10-s intervals from the initial jump to the final 10 s of the test.

Results:

No interaction between time and gender was evident for any variable; therefore, all results represent data collapsed across gender. Preactivation magnitude decreased across time periods for anterior tibialis (AT, P < .001), gastrocnemius (GAS, P < .001) and biceps femoris (BF, P = .03), but not for vastus lateralis (VL, P = .16). Muscle activation during ground contact did not change across time for BF; however, VL, G, and AT showed significant reductions (all P < .001). Peak force was reduced at 40 s compared with the initial jumps, and continued to be reduced at 50 and 60 s (all P < .05). The time from peak force to takeoff was greater at 50 and 60 s compared with the initial jumps (P < .05). Both knee fexion and ankle dorsifexion were reduced across time (both P < .001), whereas no change in relative hip angle was evident (P = .10). Absolute angle of the trunk increased with time (P < .001), whereas the absolute angle of the shank decreased (P < .001).

Conclusions:

In response to the fatiguing task, subjects reduced muscle activation and force production and altered jumping technique; however, these changes were not dependent on gender.

Restricted access

Javin C. Pierce, Malcolm H. Pope, Per Renstrom, Robert J. Johnson, Janet Dufek and Charles Dillman

A method for measuring the forces between the shoe and ski and upon the pole has been developed. Instrumented skis and poles are used with a portable data acquisition system that is carried by the skier in the field. Elite, top-level collegiate, and citizen skiers were used as subjects. Skiers performed the diagonal stride, and a marathon skate. Axial force levels at the forefoot were found to reach 164%, and 120% of body weight in the diagonal skate strides, respectively.

Restricted access

Mehmet Uygur, Goran Prebeg and Slobodan Jaric

We compared two standard methods routinely used to assess the grip force (GF; perpendicular force that hand exerts upon the hand-held object) in the studies of coordination of GF and load force (LF; tangential force) in manipulation tasks. A variety of static tasks were tested, and GF-LF coupling (i.e., the maximum cross-correlation between the forces) was assessed. GF was calculated either as the minimum value of the two opposing GF components acting upon the hand-held object (GFmin) or as their average value (GFavg). Although both methods revealed high GF-LF correlation coefficients, most of the data revealed the higher values for GFavg than for GFmin. Therefore, we conclude that the CNS is more likely to take into account GFavg than GFmin when controlling static manipulative actions as well as that GFavg should be the variable of choice in kinetic analyses of static manipulation tasks.