Search Results

You are looking at 61 - 70 of 686 items for :

Clear All
Restricted access

Michael R. Richardson, Tammie M. Johnson, Peter T. Katzmarzyk, Earl S. Ford, William R. Boyer and James R. Churilla

Background:

Few studies have examined the gender differences between C-reactive protein (CRP) and muscle strengthening activity (MSA).

Methods:

The sample (n = 7533) included U.S. adult (≥20 years of age).participants in the 1999–2004 National Health and Nutrition Examination Survey (NHANES). Created categories of MSA participation included no MSA (referent group), some MSA (≥1 to <2 days/week), and meeting the 2008 Department of Health and Human Services (DHHS) recommendation (≥2 days/week). The dependent variable was elevated CRP (>3 to 10 mg/L).

Results:

Analysis revealed significantly lower odds of having elevated CRP for women reporting some MSA (OR 0.64; 95% CI 0.44–0.93, P = .0191). Significantly lower odds of men having elevated CRP was observed in those reporting MSA volumes meeting the DHHS recommendation (OR 0.72; 95% CI 0.59–0.88, P = .0019). Following adjustment for waist circumference (WC) these odds remained significant in men but not women.

Conclusions:

These results suggest that WC may mediate the associations between MSA and CRP and this relationship may be stronger in women.

Restricted access

Koichi Nakazato, Tatsuro Hirose and Hongsun Song

More than 15% dietary protein has reportedly not led to significant muscle hypertrophy in normal growing rats. The aim of this study was to test whether a high protein (HP) diet affects myostatin (Mstn) synthesis in a rat gastrocnemius muscle. Twenty-four male Wistar rats (4-wk-old) were divided into three groups: 1) control diet (15% protein; 15P, n = 8), 2) the 25P group (25% protein, n = 8), and 3) the 35P group (35% protein, n = 8). After 3 wk of isoenergetic feedings, the Mstn level in skeletal muscles was determined using Northern and Western blotting analysis. After the experimental feeding, muscle masses were similar among groups. The 35P showed significant high expressions of Mstn both at mRNA and protein levels. Obtained results suggest that a high-protein diet leads to the high Mstn level to restrict muscle hypertrophy.

Restricted access

Kristen MacKenzie, Gary Slater, Neil King and Nuala Byrne

Evidence suggests that increasing protein distribution may be desirable to promote muscle protein synthesis (MPS) in combination with resistance exercise. However, there is a threshold above which additional protein consumption has limited benefit for MPS and may promote protein loss due to increased oxidation. This study aimed to measure daily protein intake and protein distribution in a cohort of rugby players. Twenty-five developing elite rugby union athletes (20.5 ± 2.3 years, 100.2 ± 13.3 kg, 184.4 ± 7.4 cm) were assessed at the start and end of a rugby preseason. Using a 7-day food diary the reported daily protein intake was 2.2 ± 0.7 g·kg·day-1 which exceeds daily recommendations. The reported carbohydrate intake was 3.6 ± 1.3 g·kg·day-1 which may reflect a suboptimal intake or dietary underreporting. In general, the rugby athletes were regularly consuming more than 20 g of protein; 3.8 ± 0.9 times per day (68 ± 18% of eating occasions). In addition to documenting current dietary intakes, an excess protein estimation score was calculated to determine how frequently the rugby athletes consumed protein above a known effective dose with a margin of error. 2.0 ± 0.9 eating occasions contained protein in excess of doses (20 g) known to promote MPS. Therefore, it is currently unclear whether the consumption of regular large doses of protein will benefit rugby athletes via increasing protein distribution, or whether high protein intakes may have unintended effects including a reduction in carbohydrate and/or energy intake.

Restricted access

Darren G. Candow, Natalie C. Burke, T. Smith-Palmer and Darren G. Burke

The purpose was to compare changes in lean tissue mass, strength, and myof-brillar protein catabolism resulting from combining whey protein or soy protein with resistance training. Twenty-seven untrained healthy subjects (18 female, 9 male) age 18 to 35 y were randomly assigned (double blind) to supplement with whey protein (W; 1.2 g/kg body mass whey protein + 0.3 g/kg body mass sucrose power, N = 9: 6 female, 3 male), soy protein (S; 1.2 g/kg body mass soy protein + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) or placebo (P; 1.2 g/kg body mass maltodextrine + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) for 6 wk. Before and after training, measurements were taken for lean tissue mass (dual energy X-ray absorptiometry), strength (1-RM for bench press and hack squat), and an indicator of myofbrillar protein catabolism (urinary 3-methylhistidine). Results showed that protein supplementation during resistance training, independent of source, increased lean tissue mass and strength over isocaloric placebo and resistance training (P < 0.05). We conclude that young adults who supplement with protein during a structured resistance training program experience minimal beneficial effects in lean tissue mass and strength.

Restricted access

Jenna B. Gillen, Jorn Trommelen, Floris C. Wardenaar, Naomi Y.J. Brinkmans, Joline J. Versteegen, Kristin L. Jonvik, Christoph Kapp, Jeanne de Vries, Joost J.G.C. van den Borne, Martin J. Gibala and Luc J.C. van Loon

Dietary protein intake should be optimized in all athletes to ensure proper recovery and enhance the skeletal muscle adaptive response to exercise training. In addition to total protein intake, the use of specific proteincontaining food sources and the distribution of protein throughout the day are relevant for optimizing protein intake in athletes. In the present study, we examined the daily intake and distribution of various proteincontaining food sources in a large cohort of strength, endurance and team-sport athletes. Well-trained male (n=327) and female (n=226) athletes completed multiple web-based 24-hr dietary recalls over a 2-4 wk period. Total energy intake, the contribution of animal- and plant-based proteins to daily protein intake, and protein intake at six eating moments were determined. Daily protein intake averaged 108±33 and 90±24 g in men and women, respectively, which corresponded to relative intakes of 1.5±0.4 and 1.4±0.4 g/kg. Dietary protein intake was correlated with total energy intake in strength (r=0.71, p <.001), endurance (r=0.79, p <.001) and team-sport (r=0.77, p <.001) athletes. Animal and plant-based sources of protein intake was 57% and 43%, respectively. The distribution of protein intake was 19% (19±8 g) at breakfast, 24% (25±13 g) at lunch and 38% (38±15 g) at dinner. Protein intake was below the recommended 20 g for 58% of athletes at breakfast, 36% at lunch and 8% at dinner. In summary, this survey of athletes revealed they habitually consume > 1.2 g protein/kg/d, but the distribution throughout the day may be suboptimal to maximize the skeletal muscle adaptive response to training.

Restricted access

Petra Stiegler, S. Andrew Sparks and Adam Cunliffe

Maximizing postprandial energy expenditure and fat oxidation could be of clinical relevance for the treatment of obesity. This study investigated the effect of prior exercise on energy expenditure and substrate utilization after meals containing varying amounts of macronutrients. Eight lean (11.6% ± 4.0% body fat, M ± SD) and 12 obese (35.9% ± 5.3% body fat) men were randomly assigned to a protein (43% protein, 30% carbohydrate) or a carbohydrate (10% protein, 63% carbohydrate) meal. The metabolic responses to the meals were investigated during 2 trials, when meals were ingested after a resting period (D) or cycling exercise (Ex+D; 65% of oxygen consumption reserve, 200 kcal). Energy expenditure, substrate utilization, and glucose and insulin responses were measured for 4 hr during the postprandial phase. Although postprandial energy expenditure was not affected by prior exercise, the total amount of fat oxidized was higher during Ex+D than during D (170.8 ± 60.1 g vs. 137.8 ± 50.8 g, p < .05), and, accordingly, the use of carbohydrate as substrate was decreased (136.4 ± 45.2 g vs. 164.0 ± 42.9 g, p < .05). After the protein meal fat-oxidation rates were higher than after carbohydrate intake (p < .05), an effect independent of prior exercise. Plasma insulin tended to be lower during Ex+D (p = .072) and after the protein meal (p = .066). No statistically significant change in postprandial blood glucose was induced by prior exercise. Exercising before meal consumption can result in a marked increase in fat oxidation, which is independent of the type of meal consumed.

Restricted access

Jill N. Schulte and Kevin E. Yarasheski

Advancing age is associated with a reduction in skeletal muscle protein, muscle strength, muscle quality, and chemical modifications that may impair protein function. Sarcopenia has been coupled with physical disability, frailty, and a loss of independent function (5, 19). Using stable isotope tracer methodologies and mass spectrometric detection, we observed: (a) 76–92-year-old physically frail and 62–74-year-old middle-age adults have lower mixed muscle protein synthetic rates than 20–32-year-old men and women; (b) 2 weeks and 3 months of weightlifting exercise increased the synthetic rate of myosin heavy chain (MHC) and mixed muscle proteins to a similar magnitude in frail, middle-age, and young women and men; (c) Serum myostatin-immunoreactive protein levels were elevated in physically frail women and were inversely correlated with lean mass. This suggests that the protein synthetic machinery adapts rapidly to increased contractile activity and that the adaptive response(s) are maintained even in frail elders.

Restricted access

Robert R. Wolfe

We propose that there is a link between muscle protein synthesis and breakdown that is regulated, in part, through maintenance of the free intracellular pool of essential amino acids. For example, we propose that muscle protein breakdown is paradoxically elevated in the anabolic state following resistance exercise in part because the even greater stimulation of synthesis would otherwise deplete this pool. Thus, factors regulating muscle protein breakdown must be evaluated in the context of the prevailing rate of muscle protein synthesis. Further, the direct effect of factors on breakdown may depend on the physiological state. For example, local hyperinsulinemia suppresses accelerated muscle protein breakdown after exercise, but not normal resting breakdown. Thus, factors regulating muscle protein breakdown in human subjects are complex and interactive.

Restricted access

Stuart M. Phillips, Daniel R. Moore and Jason E. Tang

There is likely no other dietary component that inspires as much debate, insofar as athletes are concerned, as protein. How much dietary protein is required, optimal, or excessive? Dietary guidelines from a variety of sources have settled on an adequate dietary protein intake for those over the age of 19 of ~0.8–0.9 g protein·kg body weight−1·d−1. According to U.S. and Canadian dietary reference intakes (33), the recommended allowance for protein of 0.8 g protein·kg−1·d−1 is “the average daily intake level that is sufficient to meet the nutrient requirement of nearly all [~98%] . . . healthy individuals” (p. 22). The panel also stated, “in view of the lack of compelling evidence to the contrary, no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise” (33, p. 661). Currently, no group or groups of scientists involved in establishing dietary guidelines see a need for any statement that athletes or people engaging in regular physical activity require more protein than their sedentary counterparts. Popular magazines, numerous Web sites, trainers, and many athletes decry protein intakes even close to those recommended. Even joint position stands from policy-setting groups state that “protein recommendations for endurance athletes are 1.2 to 1.4 g/kg body weight per day, whereas those for resistance and strength-trained athletes may be as high as 1.6 to 1.7 g/kg body weight per day” (1, p. 1544). The divide between those setting dietary protein requirements and those who might be making practical recommendations for athletes appears substantial, but ultimately, most athletes indicate that they consume protein at levels beyond even the highest recommendations. Thus, one might conclude that any debate on protein “requirements” for athletes is inconsequential; however, a critical analysis of existing and new data reveals novel ideas and concepts that may represent some common ground between these apparently conflicted groups. The goal of this review was to provide a critical and thorough analysis of current data on protein requirements in an attempt to provide some guidance to athletes, trainers, coaches, and sport dietitians on athletes’ protein intake. In addition, an effort was made to clearly distinguish between “required” dietary protein, “optimal” intakes, and intakes that are likely “excessive,” perhaps not from the standpoint of health, but certainly from the standpoint of potentially compromised performance.

Restricted access

Ida A. Heikura, Louise M. Burke, Antti A. Mero, Arja Leena Tuulia Uusitalo and Trent Stellingwerff

We investigated one week of dietary microperiodization in elite female (n = 23) and male (n = 15) runners and race-walkers by examining the frequency of training sessions and recovery periods conducted with recommended carbohydrate (CHO) and protein availability. Food and training diaries were recorded in relation to HARD (intense or >90min sessions; KEY) versus RECOVERY days (other-than KEY sessions; EASY). The targets for amount and timing of CHO and protein around KEY sessions were based on current nutrition recommendations. Relative daily energy and CHO intake was significantly (p < .05) higher in males (224 ± 26 kJ/kg/d, 7.3 ± 1.4 g/kg/d CHO) than females (204 ± 29 kJ/kg/d, 6.2 ± 1.1 g/kg/d CHO) on HARD days. However, when adjusted for training volume (km), there was no sex-based difference in CHO intake daily (HARD: 0.42 ± 0.14 vs 0.39 ± 0.15 g/kg/km). Females appeared to periodize energy and protein intake with greater intakes on HARD training days (204 ± 29 vs 187 ± 35 kJ/kg/d, p = .004; 2.0 ± 0.3 vs 1.9 ± 0.3 g/kg/d protein, p = .013), while males did not periodize intakes. Females showed a pattern of periodization of postexercise CHO for KEY vs EASY (0.9 ± 0.4 vs 0.5 ± 0.3 g/kg; p < .05) while males had higher intakes but only modest periodization (1.3 ± 0.9 vs 1.0 ± 0.4; p = .32). There was only modest evidence from female athletes of systematic microperiodization of eating patterns to meet contemporary sports nutrition guidelines. While this pattern of periodization was absent in males, in general they consumed more energy and CHO daily and around training sessions compared with females. Elite endurance athletes do not seem to systematically follow the most recent sports nutrition guidelines of periodized nutrition.