Search Results

You are looking at 61 - 70 of 866 items for :

Clear All
Restricted access

Dirk Pette and Dejan Škorjanc

We compared responses of the fast extensor digitorum longus (EDL) and tibialis anterior (TA) muscles in young (15-week) and aging (101-week) male Brown Norwegian rats to 50 days of chronic low-frequency stimulation (CLFS, 10 Hz, 10 hours/day). After 50 days of CLFS, the EDL muscles of the young (22-week) and aging (108-week) rats displayed similar increases in type IIA fibers, relative concentration of myosin heavy chain MHCIIa, elevations in mitochondrial citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities, and similar decreases in glycolytic enzyme activities (glyceraldehydephosphate dehydrogenase, lactate dehydrogenase). TA muscle in young rats contained a few cytochrome c oxidase negative (COX) type I fibers. Their number was ~2-fold elevated by CLFS. Conversely, aging muscle, which contained a slightly higher amount of COX fibers than young TA muscle, responded to CLFS with a significant decrease in COX− fibers. The appearance of small COX-positive type I fibers in stimulated aging muscle indicated that regenerating type I fibers “diluted” the COX-deficient fiber population.

Restricted access

Michael S. Green, J. Andrew Doyle, Christopher P. Ingalls, Dan Benardot, Jeffrey C. Rupp and Benjamin T. Corona

This study determined whether disrupted glucose and insulin responses to an oral glucose-tolerance test (OGTT) induced by eccentric exercise were attenuated after a repeated bout. Female participants (n = 10, age 24.7 ± 3.0 yr, body mass 64.9 ± 7.4 kg, height 1.67 ± 0.02 m, body fat 29% ± 2%) performed 2 bouts of downhill running (DTR 1 and DTR 2) separated by 14 d. OGTTs were administered at baseline and 48 hr after DTR 1 and DTR 2. Maximum voluntary isometric quadriceps torque (MVC), subjective soreness (100-mm visual analog scale), and serum creatine kinase (CK) were assessed pre-, post-, and 48 hr post-DTR 1 and DTR 2. Insulin and glucose area under the curve (38% ± 8% and 21% ± 5% increase, respectively) and peak insulin (44.1 ± 5.1 vs. 31.6 ± 4.0 μU/ml) and glucose (6.5 ± 0.4 vs. 5.5 ± 0.4 mmol/L) were elevated after DTR 1, with no increase above baseline 48 hr after DTR 2. MVC remained reduced by 9% ± 3% 48 hr after DTR 1, recovering back to baseline 48 hr after DTR 2. Soreness was elevated to a greater degree 48 hr after DTR 1 (48 ± 6 vs. 13 ± 3 mm), with a tendency for greater CK responses 48 hr after DTR 1 (813 ± 365 vs. 163 ± 43 U/L, p = .08). A novel bout of eccentric exercise confers protective effects, with subsequent bouts failing to elicit disruptions in glucose and insulin homeostasis.

Restricted access

L.J. Richard Casius, Maarten F. Bobbert and Arthur J. van Soest

Mathematical modeling and computer simulation play an increasingly important role in the search for answers to questions that cannot be addressed experimentally. One of the biggest challenges in forward simulation of the movements of the musculoskeletal system is finding an optimal control strategy. It is not uncommon for this type of optimization problem that the segment dynamics need to be calculated millions of times. In addition, these calculations typically consume a large part of the CPU time during forward movement simulations. As numerous human movements are two-dimensional (2-D) to a reasonable approximation, it is extremely convenient to have a dedicated, computational efficient method for 2-D movements. In this paper we shall present such a method. The main goal is to show that a systematic approach can be adopted which allows for both automatic formulation and solution of the equations of kinematics and dynamics, and to provide some fundamental insight in the mechanical theory behind forward dynamics problems in general. To illustrate matters, we provide for download an example implementation of the main segment dynamics algorithm, as well as a complete implementation of a model of human sprint cycling.

Restricted access

Ryan D. Andrews, David A. MacLean and Steven E. Riechman

Variability in protein consumption may influence muscle mass changes induced by resistance exercise training (RET). We sought to administer a post-exercise protein supplement and determine if daily protein intake variability affected variability in muscle mass gains. Men (N = 22) and women (N = 30) ranging in age from 60 to 69 y participated in a 12-wk RET program. At each RET session, participants consumed a post-exercise drink (0.4 g/kg lean mass protein). RET resulted in significant increases in lean mass (1.1 ±1.5 kg), similar between sexes (P > 0.05). Variability in mean daily protein intake was not associated with change in lean mass (r < 0.10, P > 0.05). The group with the highest protein intake (1.35 g · kg−1 · d−1, n = 8) had similar (P > 0.05) changes in lean mass as the group with the lowest daily protein intake (0.72 g · kg−1 · d−1, n = 9). These data suggest that variability in total daily protein intake does not affect variability in lean mass gains with RET in the context of post-exercise protein supplementation.

Restricted access

Peter N. Wiebe, Cameron J. R. Blimkie, Nathalie Farpour-Lambert, Julie Briody, Damian Marsh, Allan Kemp, Chris Cowell and Robert Howman-Giles

Few studies have explored osteogenic potential of prepubertal populations. We conducted a 28-week school-based exercise trial of single-leg drop-landing exercise with 42 prepubertal girls (6 to 10 yrs) randomly assigned to control (C), low-drop (LD) or high-drop (HD) exercise groups. The latter two groups performed single-leg drop-landings (3 sessions/wk−1 and 50 landings/session−1) from 14cm(LD) and 28cm(HD) using the nondominant leg. Osteogenic responses were assessed using Dual Energy X-ray Absorptiometry (DXA). Single-leg peak ground-reaction impact forces (PGRIF) in a subsample ranged from 2.5 to 4.4 × body-weight (BW). No differences (p > .05) were observed among groups at baseline for age, stature, lean tissue mass (LTM), leisure time physical activity, or average daily calcium intake. After adjusting for covariates of body mass, fat mass and LTM, no differences were found in bone mineral measures or site-specific bone mineral density (BMD) at the hip and lower leg among exercise or control groups. Combining data from both exercise groups failed to produce differences in bone properties when compared with the control group. No changes were apparent for between-leg differences from baseline to posttraining. In contrast to some reports, our findings suggest that strictly controlled unimodal, unidirectional single-leg drop-landing exercises involving low-moderate peak ground-reaction impact forces are not osteogenic in the developing prepubertal female skeleton.

Restricted access

Brittney Bernardoni, Tamara A. Scerpella, Paula F. Rosenbaum, Jill A. Kanaley, Lindsay N. Raab, Quefeng Li, Sijian Wang and Jodi N. Dowthwaite

We prospectively evaluated adolescent organized physical activity (PA) as a factor in adult female bone traits. Annual DXA scans accompanied semiannual records of anthropometry, maturity, and PA for 42 participants in this preliminary analysis (criteria: appropriately timed DXA scans at ~1 year premenarche [predictor] and ~5 years postmenarche [dependent variable]). Regression analysis evaluated total adolescent interscan PA and PA over 3 maturity subphases as predictors of young adult bone outcomes: 1) bone mineral content (BMC), geometry, and strength indices at nondominant distal radius and femoral neck; 2) subhead BMC; 3) lumbar spine BMC. Analyses accounted for baseline gynecological age (years pre- or postmenarche), baseline bone status, adult body size and interscan body size change. Gymnastics training was evaluated as a potentially independent predictor, but did not improve models for any outcomes (p < .07). Premenarcheal bone traits were strong predictors of most adult outcomes (semipartial r 2 = .21-0.59, p < .001). Adult 1/3 radius and subhead BMC were predicted by both total PA and PA 1-3 years postmenarche (p < .03). PA 3-5 years postmenarche predicted femoral narrow neck width, endosteal diameter, and buckling ratio (p < .05). Thus, participation in organized physical activity programs throughout middle and high school may reduce lifetime fracture risk in females.

Restricted access

Lauren A. Burt, David A. Greene and Geraldine A. Naughton

QUS can provide structural information in addition to density ( 28 ), something that standard DXA analysis does not provide. With advancing 3-dimensional imaging modalities such as pQCT and HR-pQCT, examining peripheral skeletal sites closer to impact loading locations such as the wrist and ankle are

Restricted access

Ahmed Ismaeel, Michael Holmes, Evlampia Papoutsi, Lynn Panton and Panagiotis Koutakis

oxygen uptake or greater) or has an eccentric component like down-hill running ( Gomez-Cabrera et al., 2008 ). Generally, because of the extreme plasticity of skeletal muscle, the physiological stress applied through exercise induces adaptations that improve the muscle’s ability to cope with similar