Search Results

You are looking at 61 - 70 of 279 items for :

  • "treadmill" x
  • Psychology and Behavior in Sport/Exercise x
Clear All
Restricted access

Leslie Peacock, Allan Hewitt, David A. Rowe and Rona Sutherland

Purpose:

The study investigated (a) walking intensity (stride rate and energy expenditure) under three speed instructions; (b) associations between stride rate, age, height, and walking intensity; and (c) synchronization between stride rate and music tempo during overground walking in a population of healthy older adults.

Methods:

Twenty-nine participants completed 3 treadmill-walking trials and 3 overground-walking trials at 3 self-selected speeds. Treadmill VO2 was measured using indirect calorimetry. Stride rate and music tempo were recorded during overground-walking trials.

Results:

Mean stride rate exceeded minimum thresholds for moderate to vigorous physical activity (MVPA) under slow (111.41 ± 11.93), medium (118.17 ± 11.43), and fast (123.79 ± 11.61) instructions. A multilevel model showed that stride rate, age, and height have a significant effect (p < .01) on walking intensity.

Conclusions:

Healthy older adults achieve MVPA with stride rates that fall below published minima for MVPA. Stride rate, age, and height are significant predictors of energy expenditure in this population. Music can be a useful way to guide walking cadence.

Restricted access

Randall J. Bergman, Justin W. Spellman, Michael E. Hall and Shawn M. Bergman

Background:

This study examined the validity of a selected free pedometer application (iPedometer; IP) for the iPhone that could be used to assess physical activity.

Methods:

Twenty college students (10 men, 10 women; mean age: 21.85 ± 1.57 yrs) wore an iPhone at 3 locations (pocket, waist, arm) and a StepWatch 3 Step Activity Monitor (SW) on their right ankle while walking on a treadmill at 5 different speeds (54, 67, 80, 94, 107 m·min−1). A research assistant counted steps with a tally counter (TC).

Results:

Statistical significance between the TC, SW, and IP was found during every condition except IP in the pocket at 107 m·min−1 (F 2,38 = .64, P = .54). Correlations involving the IP revealed only 1 positive correlation (IP on arm at 54 m·min−1) for any of the conditions (r = .46, P = .05).

Conclusion:

The IP application was not accurate in counting steps and recorded significantly lower step counts than the SW and TC. Thus, the free pedometer application used is not a valid instrument for monitoring activity during treadmill walking.

Restricted access

Sally A. Sherman, Renee J. Rogers, Kelliann K. Davis, Ryan L. Minster, Seth A. Creasy, Nicole C. Mullarkey, Matthew O’Dell, Patrick Donahue and John M. Jakicic

Background:

Whether the energy cost of vinyasa yoga meets the criteria for moderate-to-vigorous physical activity has not been established.

Purpose:

To compare energy expenditure during acute bouts of vinyasa yoga and 2 walking protocols.

Methods:

Participants (20 males, 18 females) performed 60-minute sessions of vinyasa yoga (YOGA), treadmill walking at a self-selected brisk pace (SELF), and treadmill walking at a pace that matched the heart rate of the YOGA session (HR-Match). Energy expenditure was assessed via indirect calorimetry.

Results:

Energy expenditure was significantly lower in YOGA compared with HR-Match (difference = 79.5 ± 44.3 kcal; P < .001) and SELF (difference = 51.7 ± 62.6 kcal; P < .001), but not in SELF compared with HR-Match (difference = 27.8 ± 72.6 kcal; P = .054). A similar pattern was observed for metabolic equivalents (HR-Match = 4.7 ± 0.8, SELF = 4.4 ± 0.7, YOGA = 3.6 ± 0.6; P < .001). Analyses using only the initial 45 minutes from each of the sessions, which excluded the restorative component of YOGA, showed energy expenditure was significantly lower in YOGA compared with HR-Match (difference = 68.0 ± 40.1 kcal; P < .001) but not compared with SELF (difference = 15.1 ± 48.7 kcal; P = .189).

Conclusions:

YOGA meets the criteria for moderate-intensity physical activity. Thus, YOGA may be a viable form of physical activity to achieve public health guidelines and to elicit health benefits.

Restricted access

Jeffer Eidi Sasaki, Amanda Hickey, Marianna Mavilia, Jacquelynne Tedesco, Dinesh John, Sarah Kozey Keadle and Patty S. Freedson

Objective:

The purpose of this study was to examine the accuracy of the Fitbit wireless activity tracker in assessing energy expenditure (EE) for different activities.

Methods:

Twenty participants (10 males, 10 females) wore the Fitbit Classic wireless activity tracker on the hip and the Oxycon Mobile portable metabolic system (criterion). Participants performed walking and running trials on a treadmill and a simulated free-living activity routine. Paired t tests were used to test for differences between estimated (Fitbit) and criterion (Oxycon) kcals for each of the activities.

Results:

Mean bias for estimated energy expenditure for all activities was −4.5 ± 1.0 kcals/6 min (95% limits of agreement: −25.2 to 15.8 kcals/6 min). The Fitbit significantly underestimated EE for cycling, laundry, raking, treadmill (TM) 3 mph at 5% grade, ascent/descent stairs, and TM 4 mph at 5% grade, and significantly overestimated EE for carrying groceries. Energy expenditure estimated by the Fitbit was not significantly different than EE calculated from the Oxycon Mobile for 9 activities.

Conclusion:

The Fitbit worn on the hip significantly underestimates EE of activities. The variability in underestimation of EE for the different activities may be problematic for weight loss management applications since accurate EE estimates are important for tracking/monitoring energy deficit.

Restricted access

Eric D. Vidoni, Anna Mattlage, Jonathan Mahnken, Jeffrey M. Burns, Joe McDonough and Sandra A. Billinger

The purpose of this study was to determine the validity of a submaximal exercise test, the Step Test Exercise Prescription (STEP), in a broad age range and in individuals in the earliest stages of Alzheimer’s disease (AD). Individuals (n = 102) underwent treadmill-based maximal exercise testing and a STEP. The STEP failed to predict peak oxygen consumption (VO2peak), and was a biased estimate of VO2peak (p < .0001). Only 43% of subjects’ STEP results were within 3.5 ml · kg–1 · min–1 of VO2peak. When categorized into fitness levels these 2 measures demonstrated moderate agreement (kappa = .59). The validity of the STEP was not supported in our participants, including those with AD. The STEP may not be appropriate in the clinic as a basis for exercise recommendations in these groups, although it may continue to have utility in classifying fitness in research or community health screenings.

Restricted access

Joanne Kraenzle Schneider

The purpose of this study was to examine the relationship between self-reported exercise behavior and physiological indicators of exercise behavior (body composition and oxygen consumption measures) in older women. Three self-report exercise behavior instruments were administered in counterbalanced order. Body mass index and sums of skinfold thicknesses were used as measures of body composition. Oxygen consumption was measured using a metabolic cart during a treadmill test while women walked at approximately 70% of their heart rate reserve. Fifty-nine women participated (68.7 ± 6.0 years). Results showed that self-reported exercise behavior was moderately related to body composition measures. However, predicted maximal oxygen consumption was only weakly related to self-reported exercise behavior.

Restricted access

Lucie Péloquin, Pierre Gauthier, Gina Bravo, Guy Lacombe and Jean-Sébastien Billiard

The purposes of the present study were (a) to evaluate the test-retest reliability of the Price et al. (1988) 5-min walking field test, (b) to assess the validity of the test as an estimate of aerobic fitness, and (c) to derive a predictive model for estimating V˙O2 peak. The subjects were men and women age ≥50 with knee osteoarthritis. A high intraclass correlation coefficient was obtained in the reliability study, which included 60 subjects who did the 5-min walk twice within a maximum of 11 days. For the validity study, distances walked at the first walking trial were compared with V˙O2 peak values measured by a maximal treadmill test. The best predictive model included the following predictor variables: distance walked in 5 min, age, sex, and weight. Results indicate that the 5-minutc walking field test is a reliable and valid method for estimating V˙O2 peak in this population.

Restricted access

Nobuo Takeshima, William F. Brechue, Setsuko Ueya and Kiyoji Tanaka

This study attempted to determine the accuracy of measuring heart rate by radial artery palpation in elderly individuals. Elderly (ELD; n = 26) and young (Y; n = 21) individuals completed 3 intensity levels of exercise on a treadmill, each carried out on a separate day. Participants determined their heart rate by palpating the radial artery (PR) after exercise. In ELD, there were significant differences between PR and electrocardiogram (ECG; p = .007). Heart-rate errors at each intensity of exercise were 7.2 ± 12.5, 6.6 ± 15.7, and 10.1 ± 16.5 beats/min. There were no differences in PR and ECG in Y. Fingertip sensitivity was significantly lower in ELD than in Y. A significant, negative correlation existed (r = -.56, n = 26) between heart-rate error and fingertip sensitivity in ELD. These data suggest that self-conducted PR by elderly individuals fails to accurately estimate heart rate. This appears to result from lessened vibrotactile sensitivity in the fingers.

Restricted access

Nobuo Takeshima, Masatoshi Nakata, Fumio Kobayashi, Kiyoji Tanaka and Michael L. Pollock

The purpose of this study was to determine the effects of head-out-of-water immersion (HOI) on elderly subjects’ heart rate (HR) and oxygen uptake (V̇O2) responses to graded walking exercise. Subjects were 15 elderly participants. who selected three walking speeds and exercised for 6 min at each intensity on land and in the water. HOI exercise was carried out with subjects immersed to the level of the axilla. HR response at a given V̇O2 during walking with HOI was similar to the values found for walking on land, in contrast to published data on young subjects. The findings are consistent with the hypothesis that water immersion-induced central redistribution of blood volume changes with advancing age and may lead to a difference in the HR–V̇O2 relationship during HOI walking in the elderly compared to the young. This has important implications for prescribing exercise to the elderly when using treadmill HR values for HOI walking training.

Restricted access

K. Fiona Iredale and Myra A. Nimmo

Thirty-three men (age 26–55 years) who did not exercise regularly were exercised to exhaustion using an incremental treadmill protocol. Blood lactate concentration was measured to identify lactate threshold (LT, oxygen consumption at which blood lactate concentration begins to systematically increase). The correlation coefficient for LT (ml · kg−1 · min−1) with age was not significant, but when LT was expressed as a percentage of peak oxygen consumption (VO2 peak), the correlation was r = +.69 (p < .01). This was despite a lack of significant correlation between age and VO2 peak (r = −.33). The correlation between reserve capacity (the difference between VO2 peak and LT) and age was r = −.73 (p < .01 ), and reserve capacity decreased at a rate of 3.1 ml · kg−1 · min−1 per decade. It was concluded that the percentage of VO2 peak at which LT occurs increases progressively with age, with a resultant decrease in reserve capacity.