Search Results

You are looking at 61 - 70 of 884 items for :

  • Physical Education and Coaching x
Clear All
Restricted access

Ryu Nagahara, Alberto Botter, Enrico Rejc, Masaaki Koido, Takeshi Shimizu, Pierre Samozino and Jean-Benoit Morin

Purpose:

To test the concurrent validity of data from 2 different global positioning system (GPS) units for obtaining mechanical properties during sprint acceleration using a field method recently validated by Samozino et al.

Methods:

Thirty-two athletes performed maximal straight-line sprints, and their running speed was simultaneously measured by GPS units (sampling rate: 20 or 5 Hz) and either a radar or laser device (devices taken as references). Lower-limb mechanical properties of sprint acceleration (theoretical maximal force, theoretical maximal speed, maximal power) were derived from a modeling of the speed–time curves using an exponential function in both measurements. Comparisons of mechanical properties from 20- and 5-Hz GPS units with those from reference devices were performed for 80 and 62 trials, respectively.

Results:

The percentage bias showed a wide range of overestimation or underestimation for both systems (-7.9% to 9.7% and -5.1% to 2.9% for 20- and 5-Hz GPS), while the ranges of its 90% confidence limits for 20-Hz GPS were markedly smaller than those for 5-Hz GPS. These results were supported by the correlation analyses.

Conclusions:

Overall, the concurrent validity for all variables derived from 20-Hz GPS measurements was better than that obtained from the 5-Hz GPS units. However, in the current state of GPS devices’ accuracy for speed–time measurements over a maximal sprint acceleration, it is recommended that radar, laser devices, and timing gates remain the reference methods for implementing the computations of Samozino et al.

Restricted access

Michael J. Stewart and David Destache

The purpose of this study was to determine the validity of interval recording utilizing a 5-s whole-interval observe time period and 5-s, 10-s, and 20-s lengths of recording intervals in measuring the classroom climates of management, instruction, and activity in a physical education setting. The various record-interval lengths were always in conjunction with a 5-s observe interval. Subjects in the study were 9 physical education teachers from elementary, junior high, and senior high levels. Activities taught by the subjects included rhythms, gymnastics, ball handling, badminton, tennis, and swimming. Each subject was videotaped for one lesson (M=28.9 min). The videotape bank was used to determine the actual and estimated time subjects spent in each climate. Comparison of the continuous time spent in management, instruction, and activity was made with the 5-s observe, 5-s record; 5-s observe, 10-s record; and 5-s observe, 20-s record interval techniques. Data were analyzed utilizing an ANOVA with repeated measures on the continuous factor. Results indicated no significant difference between continuous recording of management, instruction, and activity climates and any of the three observe-record methods. These results suggest that the observe-record methods were valid estimates of time spent in management, instruction, and activity climates.

Restricted access

Matthew D. Portas, Jamie A. Harley, Christopher A. Barnes and Christopher J. Rush

Purpose:

The study aimed to analyze the validity and reliability of commercially available nondifferential Global Positioning System (NdGPS) devices for measures of total distance during linear, multidirectional and soccer-specific motion at 1-Hz and 5-Hz sampling frequencies.

Methods:

Linear (32 trials), multidirectional (192 trials) and soccer-specific courses (40 trials) were created to test the validity (mean ± 90% confidence intervals), reliability (mean ± 90% confidence intervals) and bias (mean ± 90% confidence intervals) of the NdGPS devices against measured distance. Standard error of the estimate established validity, reliability was determined using typical error and percentage bias was established.

Results:

The 1-Hz and 5-Hz data ranged from 1.3% ± 0.76 to 3.1% ± 1.37 for validity and 2.03% ± 1.31 to 5.31% ± 1.2 for reliability for measures of linear and soccer-specific motion. For multidirectional activity, data ranged from 1.8% ± 0.8 to 6.88% ± 2.99 for validity and from 3.08% ± 1.34 to 7.71% ± 1.65 for reliability. The 1-Hz underestimated some complex courses by up to 11%.

Conclusions:

1-Hz and 5-Hz NdGPS could be used to quantify distance in soccer and similar field-based team sports. Both 1-Hz and 5-Hz have a threshold beyond which reliability is compromised. 1-Hz also underestimates distance and is less valid in more complex courses.

Restricted access

J. Len Gusthart, Ivan M. Kelly and Judith E. Rink

The purpose of this study was to determine the relationship between the Qualitative Measures of Teaching Performance Scale (QMTPS; Rink & Werner, 1989) and teacher effectiveness in producing student achievement. The QMTPS focuses primarily on variables related to teacher clarity and task presentation. Nine middle school generalist (classroom) teachers were asked to teach the volleyball forearm pass and serve over eight lessons as part of their normal curriculum. Students were pre- and posttested on the serve and forearm pass using the American Alliance for Health, Physical Education and Recreation (1969) volleyball tests. All lessons were videotaped and were coded using the QMTPS instrument. The relationship between the QMTPS total score and student achievement was significant for the forearm pass and for the serve. The authors concluded that the QMTPS was a valid measure of teacher effectiveness when the total QMTPS score for several lessons was used.

Restricted access

Daniel W.T. Wundersitz, Paul B. Gastin, Samuel J. Robertson and Kevin J. Netto

Context:

Accelerometer peak impact accelerations are being used to measure player physical demands in contact sports. However, their accuracy to do so has not been ascertained.

Purpose:

To compare peak-impact-acceleration data from an accelerometer contained in a wearable tracking device with a 3-dimensional motion-analysis (MA) system during tackling and bumping.

Methods:

Twenty-five semielite rugby athletes wore a tracking device containing a 100-Hz triaxial accelerometer (MinimaxX S4, Catapult Innovations, Australia). A single retroreflective marker was attached to the device, with its position recorded by a 12-camera MA system during 3 physical-collision tasks (tackle bag, bump pad, and tackle drill; N = 625). The accuracy, effect size, agreement, precision, and relative errors for each comparison were obtained as measures of accelerometer validity.

Results:

Physical-collision peak impact accelerations recorded by the accelerometer overestimated (mean bias 0.60 g) those recorded by the MA system (P < .01). Filtering the raw data at a 20-Hz cutoff improved the accelerometer’s relationship with MA data (mean bias 0.01 g; P > .05). When considering the data in 9 magnitude bands, the strongest relationship with the MA system was found in the 3.0-g or less band, and the precision of the accelerometer tended to reduce as the magnitude of impact acceleration increased. Of the 3 movements performed, the tackle-bag task displayed the greatest validity with MA.

Conclusions:

The findings indicate that the MinimaxX S4 accelerometer can accurately measure physical-collision peak impact accelerations when data are filtered at a 20-Hz cutoff frequency. As a result, accelerometers may be useful to measure physical collisions in contact sports.

Restricted access

Montassar Tabben, Jeremy Coquart, Helmi Chaabène, Emerson Franchini, Karim Chamari and Claire Tourny

Purpose:

This study determined the validity and reliability of a new specific field test that was based on the scientific data from the latest research.

Methods:

Seventeen international-level karatekas participated in the study: 14 men (age 24.1 ± 4.6 y, body mass 65.7 ± 10.8 kg) and 3 women (age 19 ± 3.6 y, body mass 54.1 ± 0.9 kg). All performed the new karate-specific test (KST) 2 times (test and retest sessions were carried out on separated occasions 1 wk apart). Thirteen men also performed a laboratory test to assess maximal oxygen uptake (VO2max).

Results:

Test–retest results showed the KST to be reliable. Peak oxygen uptake (VO2peak), peak heart rate (HRpeak), blood lactate concentration, rating of perceived exertion, and time to exhaustion (TE) did not display a difference between the test and the retest. The SEM and ICC for relative and absolute VO2peak and TE were <5% and >.90, respectively. Significant correlations were found between VO2peak (mL · kg−1 · min−1) and TE measured from the KST (r = .71, 95%CI 0.35–0.88, P < .0001). There was also no significant difference between VO2peak measured from the KST and VO2max recorded from the cycle-ergometer laboratory test (55.1 ± 4.8 vs 53.2 ± 6.6 mL · kg−1 · min−1, respectively; t = –1.85, df = 12, P = .08, dz = 0.51 [small]). The Bland and Altman analyses reported a mean difference (bias) ± the 95% limits of agreement of 1.9 ± 7.35 mL · kg−1 · min−1.

Conclusions:

This study showed that the new KST test, with effort patterns replicating real karate combat sessions, can be considered a valid and reliable karate-specific field test for assessing karatekas’ endurance fitness.

Restricted access

Steve Barrett, Adrian Midgley and Ric Lovell

Purpose:

The study aimed to establish the test–retest reliability and convergent validity of PlayerLoad™ (triaxial-accelerometer data) during a standardized bout of treadmill running.

Methods:

Forty-four team-sport players performed 2 standardized incremental treadmill running tests (7–16 km/h) 7 d apart. Players’ oxygen uptake (VO2; n = 20), heart rate (n = 44), and triaxialaccelerometer data (PlayerLoad; n = 44) measured at both the scapulae and at the center of mass (COM), were recorded. Accelerometer data from the individual component planes of PlayerLoad (anteroposterior [PLAP], mediolateral [PLML], and vertical [PLV]) were also examined.

Results:

Moderate to high test–retest reliability was observed for PlayerLoad and its individual planes (ICC .80–.97, CV 4.2–14.8%) at both unit locations. PlayerLoad was significantly higher at COM vs scapulae (223.4 ± 42.6 vs 185.5 ± 26.3 arbitrary units; P = .001). The percentage contributions of individual planes to PlayerLoad were higher for PLML at the COM (scapulae 20.4% ± 3.8%, COM 26.5% ± 4.9%; P = .001) but lower for PLV (scapulae 55.7% ± 5.3%, COM 49.5% ± 6.9%; P = .001). Between-subjects correlations between PlayerLoad and VO2, and between PlayerLoad and heart rate were trivial to moderate (r = –.43 to .33), whereas within-subject correlations were nearly perfect (r = .92–.98).

Conclusions:

PlayerLoad had a moderate to high degree of test–retest reliability and demonstrated convergent validity with measures of exercise intensity on an individual basis. However, caution should be applied in making between-athletes contrasts in loading and when using recordings from the scapulae to identify lower-limb movement patterns.

Restricted access

Dean J. McNamara, Tim J. Gabbett, Paul Chapman, Geraldine Naughton and Patrick Farhart

Purpose:

Bowling workload is linked to injury risk in cricket fast bowlers. This study investigated the validity of microtechnology in the automated detection of bowling counts and events, including run-up distance and velocity, in cricket fast bowlers.

Method:

Twelve highly skilled fast bowlers (mean ± SD age 23.5 ± 3.7 y) performed a series of bowling, throwing, and fielding activities in an outdoor environment during training and competition while wearing a microtechnology unit (MinimaxX). Sensitivity and specificity of a bowling-detection algorithm were determined by comparing the outputs from the device with manually recorded bowling counts. Run-up distance and run-up velocity were measured and compared with microtechnology outputs.

Results:

No significant differences were observed between direct measures of bowling and nonbowling events and true positive and true negative events recorded by the MinimaxX unit (P = .34, r = .99). The bowling-detection algorithm was shown to be sensitive in both training (99.0%) and competition (99.5%). Specificity was 98.1% during training and 74.0% during competition. Run-up distance was accurately recorded by the unit, with a percentage bias of 0.8% (r = .90). The final 10-m (–8.9%, r = .88) and 5-m (–7.3%, r = .90) run-up velocities were less accurate.

Conclusions:

The bowling-detection algorithm from the MinimaxX device is sensitive to detect bowling counts in both cricket training and competition. Although specificity is high during training, the number of false positive events increased during competition. Additional bowling workload measures require further development.

Restricted access

Jon L. Oliver, Neil Armstrong and Craig A. Williams

Purpose:

The purpose of the study was to assess the reliability and validity of a newly developed laboratory protocol to measure prolonged repeated-sprint ability (RSA) during soccer-specific exercise.

Methods:

To assess reliability, 12 youth soccer players age 15.2 ± 0.3 y performed 2 trials of a soccer-specific intermittent-exercise test (SSIET) separated by 3 months. The test was performed on a nonmotorized treadmill. A separate sample of 12 youth soccer players (15.2 ± 0.3 y) completed the SSIET while simultaneously HR, VO2, and blood lactate (BLa) were monitored. The SSIET was designed to replicate the demands of competing in one half of a soccer match while sprint performance was monitored. The test included a 5-s sprint every 2 min.

Results:

The mean coefficient of variation was 2.5% for the total distance covered during the SSIET and 3.8% for the total distance sprinted; measures of power output were less reliable (>5.9%). Participants covered 4851 ± 251 m during the SSIET, working at an average intensity of 87.5% ± 3.2% HRpeak and 70.2% ± 3.1% VO2peak, with ~7mmol/L BLa accumulation. A significant reduction (P < .05) in sprint performance was ob served over the course of the SSIET.

Conclusion:

The SSIET provided a reliable method of assessing prolonged RSA in the laboratory. The distance covered and the physiological responses during the SSIET successfully recreated the demands of competing in a soccer match.

Restricted access

Graham J. Mytton, David T. Archer, Kevin G. Thompson, Andrew Renfree and Alan St Clair Gibson

The collection of retrospective lap times from video footage is a potentially useful research tool to analyze the pacing strategies in any number of competitive events. The aim of this study was to validate a novel method of obtaining running split-time data from publically available video footage. Videos of the 1500-m men’s final from the 2004 and 2008 Olympics, 2005 and 2009 World Championships, and 2010 European Championships were obtained from the YouTube Web site, and split times were collected from all competitors using frame-by-frame playback. The typical error of video split times ranged between 0.02 s and 0.11 s for the 4 laps when compared with official split times. Video finishing times were also similar to official finishing times (typical error of 0.04 s). The method was shown to be highly reliable with a typical error of 0.02 s when the same video was analyzed on 2 occasions separated by 8 mo. Video data of track races are widely available; however, camera angles are not always perpendicular to the start/finish line, and some slower athletes may cross the line after the camera has panned away. Nevertheless, the typical errors reported here show that when appropriate camera angles are available this method is both valid and reliable.