Search Results

You are looking at 71 - 80 of 670 items for :

  • Physical Education and Coaching x
Clear All
Restricted access

Katrina Taylor, Jeffrey Seegmiller and Chantal A. Vella

Purpose:

To determine whether a decremental protocol could elicit a higher maximal oxygen consumption (VO2max) than an incremental protocol in trained participants. A secondary aim was to examine whether cardiac-output (Q) and stroke-volume (SV) responses differed between decremental and incremental protocols in this sample.

Methods:

Nineteen runners/triathletes were randomized to either the decremental or incremental group. All participants completed an initial incremental VO2max test on a treadmill, followed by a verification phase. The incremental group completed 2 further incremental tests. The decremental group completed a second VO2max test using the decremental protocol, based on their verification phase. The decremental group then completed a final incremental test. During each test, VO2, ventilation, and heart rate were measured, and cardiac variables were estimated with thoracic bioimpedance. Repeated-measures analysis of variance was conducted with an alpha level set at .05.

Results:

There were no significant main effects for group (P = .37) or interaction (P = .10) over time (P = .45). VO2max was similar between the incremental (57.29 ± 8.94 mL · kg–1 · min–1) and decremental (60.82 ± 8.49 mL · kg–1 · min–1) groups over time. Furthermore, Q and SV were similar between the incremental (Q 22.72 ± 5.85 L/min, SV 119.64 ± 33.02 mL/beat) and decremental groups (Q 20.36 ± 4.59 L/min, SV 109.03 ± 24.27 mL/beat) across all 3 trials.

Conclusions:

The findings suggest that the decremental protocol does not elicit higher VO2max than an incremental protocol but may be used as an alternative protocol to measure VO2max in runners and triathletes.

Restricted access

Thomas Losnegard, Martin Andersen, Matt Spencer and Jostein Hallén

Purpose:

To investigate the effects of an active and a passive recovery protocol on physiological responses and performance between 2 heats in sprint cross-country skiing.

Methods:

Ten elite male skiers (22 ± 3 y, 184 ± 4 cm, 79 ± 7 kg) undertook 2 experimental test sessions that both consisted of 2 heats with 25 min between start of the first and second heats. The heats were conducted as an 800-m time trial (6°, >3.5 m/s, ~205 s) and included measurements of oxygen uptake (VO2) and accumulated oxygen deficit. The active recovery trial involved 2 min standing/walking, 16 min jogging (58% ± 5% of VO2peak), and 3 min standing/walking. The passive recovery trial involved 15 min sitting, 3 min walk/jog (~ 30% of VO2peak), and 3 min standing/walking. Blood lactate concentration and heart rate were monitored throughout the recovery periods.

Results:

The increased 800-m time between heat 1 and heat 2 was trivial after active recovery (effect size [ES] = 0.1, P = .64) and small after passive recovery (ES = 0.4, P = .14). The 1.2% ± 2.1% (mean ± 90% CL) difference between protocols was not significant (ES = 0.3, P = .3). In heat 2, peak and average VO2 was increased after the active recovery protocol.

Conclusions:

Neither passive recovery nor running at ~58% of VO2peak between 2 heats changed performance significantly.

Restricted access

Humberto M. Carvalho, Manuel J. Coelho-e-Silva, Joey C. Eisenmann and Robert M. Malina

Relationships among chronological age (CA), maturation, training experience, and body dimensions with peak oxygen uptake (VO2max) were considered in male basketball players 14–16 y of age. Data for all players included maturity status estimated as percentage of predicted adult height attained at the time of the study (Khamis-Roche protocol), years of training, body dimensions, and VO2max (incremental maximal test on a treadmill). Proportional allometric models derived from stepwise regressions were used to incorporate either CA or maturity status and to incorporate years of formal training in basketball. Estimates for size exponents (95% CI) from the separate allometric models for VO2max were height 2.16 (1.23–3.09), body mass 0.65 (0.37–0.93), and fat-free mass 0.73 (0.46–1.02). Body dimensions explained 39% to 44% of variance. The independent variables in the proportional allometric models explained 47% to 60% of variance in VO2max. Estimated maturity status (11–16% of explained variance) and training experience (7–11% of explained variance) were significant predictors with either body mass or estimated fat-free mass (P ≤ .01) but not with height. Biological maturity status and training experience in basketball had a significant contribution to VO2max via body mass and fat-free fat mass and also had an independent positive relation with aerobic performance. The results highlight the importance of considering variation associated with biological maturation in aerobic performance of late-adolescent boys.

Restricted access

Ana Sousa, Pedro Figueiredo, David Pendergast, Per-Ludvik Kjendlie, João P. Vilas-Boas and Ricardo J. Fernandes

Swimming has become an important area of sport science research since the 1970s, with the bioenergetic factors assuming a fundamental performance-influencing role. The purpose of this study was to conduct a critical evaluation of the literature concerning oxygen-uptake (VO2) assessment in swimming, by describing the equipment and methods used and emphasizing the recent works conducted in ecological conditions. Particularly in swimming, due to the inherent technical constraints imposed by swimming in a water environment, assessment of VO2max was not accomplished until the 1960s. Later, the development of automated portable measurement devices allowed VO2max to be assessed more easily, even in ecological swimming conditions, but few studies have been conducted in swimming-pool conditions with portable breath-by-breath telemetric systems. An inverse relationship exists between the velocity corresponding to VO2max and the time a swimmer can sustain it at this velocity. The energy cost of swimming varies according to its association with velocity variability. As, in the end, the supply of oxygen (whose limitation may be due to central—O2 delivery and transportation to the working muscles—or peripheral factors—O2 diffusion and utilization in the muscles) is one of the critical factors that determine swimming performance, VO2 kinetics and its maximal values are critical in understanding swimmers’ behavior in competition and to develop efficient training programs.

Restricted access

Andrew M. Murray, Joong Hyun Ryu, John Sproule, Anthony P. Turner, Phil Graham-Smith and Marco Cardinale

Purpose:

Running performance is influenced by the interaction of biomechanical and physiological factors. Miniaturized accelerometers worn by athletes can be used to quantify mechanical aspects of running and as a noninvasive tool to assess training status and progression. The aim of this study was to define and validate a method to assess running regularity and allow the estimation of an individual’s oxygen uptake (V̇O2) and/or blood lactate—[La]b—based on data collected with accelerometers and heart rate.

Methods:

Male adolescent endurance athletes completed an incremental submaximal aerobic stage test where V̇O2 and [La]b were measured. The test was terminated when [La]b concentration at the end of the stage exceeded 4 mmol/L. Two wireless triaxial accelerometers were placed on participants’ right shank and lower back throughout the test. The root mean square (RMS) and sample entropy (SampEn) were calculated for the vertical, mediolateral, and anteroposterior components of acceleration.

Results:

There were significant positive correlations of acceleration and entropy variables with [La]b and V̇O2, with moderate to high coefficients (r = .43–.87). RMS of the shank acceleration was the most highly related with both physiological variables. When the accelerometer was attached on the trunk, SampEn of the vertical acceleration had the strongest relationship with V̇O2 (r = .76, P < .01).

Conclusions:

The described method analyzing running complexity may allow an assessment of gait variability, which noninvasively tracks V̇O2 and/or [La]b, allowing monitoring of fatigue or training readiness for trained adolescent individuals.

Restricted access

Stamatis Agiovlasitis, Jeffrey A. McCubbin, Joonkoo Yun, Michael J. Pavol and Jeffrey J. Widrick

This study examined whether the net rate of oxygen uptake (VO2net) and the net oxygen uptake per kilometer (VO2net/km) are affected during walking in adults with Down syndrome (DS) and whether their preferred walking speed (PWS) minimizes the VO2net/km. Respiratory gases were collected as 14 adults with DS and 15 adults without DS completed a series of treadmill walking trials. PWS was measured over 15 meters in a hallway. The VO2net and the VO2net/km were higher in adults with DS than adults without DS. The overground PWS normalized for leg length was the same for both groups and did not appear to minimize the VO2net/km. Thus, adults with DS are less economical during walking than adults without DS. The overground PWS does not minimize the metabolic cost during treadmill walking.

Restricted access

Oliver Faude, Tim Meyer and Wilfried Kindermann

Purpose:

The work rate (WR) corresponding to ventilatory threshold (VT) is an appropriate intensity for regenerative and low-intensity training sessions. During incremental ramp exercise, VO2 increase lags behind WR increase. Traditionally, a VO2 time delay (t d) of 45 seconds is used to calculate the WR at VT from such tests. Considerable inaccuracies were observed when using this constant t d. Therefore, this study aimed at reinvestigating the temporal relationship between VO2 and WR at VT.

Methods:

20 subjects (VO2peak 49.9 to 72.6 mL · min–1 · kg–1) performed a ramp test in order to determine VT and a subsequent steady-state test during which WR was adjusted to elicit the VO2 corresponding to VT. The difference in WR and heart rate at VT was calculated between the ramp and the steady-state test (WRdiff, HRdiff) as well as the time delay corresponding to WRdiff during ramp exercise.

Results:

Mean values were t d = 85 ± 26 seconds (range 38 to 144), WRdiff = 45 ± 12 W (range 23 to 67), HRdiff = 1 ± 9 beats/min (range –21 to +15). The limits of agreement for the difference between WR at VT during ramp and steady-state exercise were ± 24 W. No signifi cant influence on t d, WRdiff, or HRdiff from differences in endurance capacity (VO2peak and VT; P > .10 for all correlations) or ramp increment (P = .26, .49, and .85, respectively) were observed.

Conclusion:

The wide ranges of t d, WRdiff, and HRdiff prevent the derivation of exact training guidelines from single-ramp tests. It is advisable to perform a steady-state test to exactly determine the WR corresponding to VT.

Restricted access

Laurent Mourot, Nicolas Fabre, Erik Andersson, Sarah Willis, Martin Buchheit and Hans-Christer Holmberg

Postexercise heart-rate (HR) recovery (HRR) indices have been associated with running and cycling endurance-exercise performance. The current study was designed (1) to test whether such a relationship also exists in the case of cross-country skiing (XCS) and (2) to determine whether the magnitude of any such relationship is related to the intensity of exercise before obtaining HRR indices. Ten elite male cross-country skiers (mean ± SD; 28.2 ± 5.4 y, 181 ± 8 cm, 77.9 ± 9.4 kg, 69.5 ± 4.3 mL · min−1 · kg−1 maximal oxygen uptake [VO2max]) performed 2 sessions of roller-skiing on a treadmill: a 2 × 3-km time trial and the same 6-km at an imposed submaximal speed followed by a final 800-m time trial. VO2 and HR were monitored continuously, while HRR and blood lactate (BLa) were assessed during 2 min immediately after each 6-km and the 800-m time trial. The 6-km time-trial time was largely negatively correlated with VO2max and BLa. On the contrary, there was no clear correlation between the 800-m time-trial time and VO2, HR, or BLa. In addition, in no case was any clear correlation between any of the HRR indices and performance time or VO2max observed. These findings confirm that XCS performance is largely correlated with VO2max and the ability to tolerate high levels of BLa; however, postexercise HRR showed no clear association with performance. The homogeneity of the group of athletes involved and the contribution of the arms and upper body to the exercise preceding determination of HRR may explain this absence of a relationship.

Restricted access

Dennis-Peter Born, Thomas Stöggl, Mikael Swarén and Glenn Björklund

Purpose:

To investigate the cardiorespiratory and metabolic response of trail running and evaluate whether heart rate (HR) adequately reflects the exercise intensity or if the tissue-saturation index (TSI) could provide a more accurate measure during running in hilly terrain.

Methods:

Seventeen competitive runners (4 women, V̇O2max, 55 ± 6 mL · kg–1 · min–1; 13 men, V̇O2max, 68 ± 6 mL · kg–1 · min–1) performed a time trial on an off-road trail course. The course was made up of 2 laps covering a total distance of 7 km and included 6 steep uphill and downhill sections with an elevation gain of 486 m. All runners were equipped with a portable breath-by-breath gas analyzer, HR belt, global positioning system receiver, and near-infrared spectroscopy (NIRS) device to measure the TSI.

Results:

During the trail run, the exercise intensity in the uphill and downhill sections was 94% ± 2% and 91% ± 3% of maximal heart rate, respectively, and 84% ± 8% and 68% ± 7% of V̇O2max, respectively. The oxygen uptake (V̇O2) increased in the uphill sections and decreased in the downhill sections (P < .01). Although HR was unaffected by the altering slope conditions, the TSI was inversely correlated to the changes in V̇O2 (r = –.70, P < .05).

Conclusions:

HR was unaffected by the continuously changing exercise intensity; however, TSI reflected the alternations in V̇O2. Recently used exclusively for scientific purposes, this NIRS-based variable may offer a more accurate alternative than HR to monitor running intensity in the future, especially for training and competition in hilly terrain.

Restricted access

Dietmar Wallner, Helmut Simi, Gerhard Tschakert and Peter Hofmann

Purpose:

To analyze the acute physiological response to aerobic short-interval training (AESIT) at various high-intensity running speeds. A minor anaerobic glycolytic energy supply was aimed to mimic the characteristics of slow continuous runs.

Methods:

Eight trained male runners (maximal oxygen uptake [VO2max] 55.5 ± 3.3 mL · kg−1 · min−1) performed an incremental treadmill exercise test (increments: 0.75 km · h−1 · min−1). Two lactate turn points (LTP1, LTP2) were determined. Subsequently, 3 randomly assigned AESIT sessions with high-intensity running-speed intervals were performed at speeds close to the speed (v) at VO2max (vVO2max) to create mean intensities of 50%, 55%, and 60% of vLTP1. AESIT sessions lasted 30 min and consisted of 10-s work phases, alternated by 20-s passive recovery phases.

Results:

To produce mean velocities of 50%, 55%, and 60% of vLTP1, running speeds were calculated as 18.6 ± 0.7 km/h (93.4% vVO2max), 20.2 ± 0.6 km/h (101.9% vVO2max), and 22.3 ± 0.7 km/h (111.0% vVO2max), which gave a mean blood lactate concentration (La) of 1.09 ± 0.31 mmol/L, 1.57 ± 0.52 mmol/L, and 2.09 ± 0.99 mmol/L, respectively. La at 50% of vLTP1 was not significantly different from La at vLTP1 (P = .8894). Mean VO2 was found at 54.0%, 58.5%, and 64.0% of VO2max, while at the end of the sessions VO2 rose to 71.1%, 80.4%, and 85.6% of VO2max, respectively.

Conclusion:

The results showed that AESIT with 10-s work phases alternating with 20 s of passive rest and a running speed close to vVO2max gave a systemic aerobic metabolic profile similar to slow continuous runs.