Search Results

You are looking at 71 - 80 of 165 items for :

  • "acute exercise" x
Clear All
Restricted access

Rafel Cirer-Sastre, Alejandro Legaz-Arrese, Francisco Corbi, Keith George, Jinlei Nie, Luis Enrique Carranza-García and Joaquim Reverter-Masià

Purpose: The authors evaluated the impact of acute exercise and 24-hour recovery on serum concentration of cardiac troponins T and I (cTnT and cTnI) and N-terminal fragment of the prohormone brain natriuretic peptide (NT-proBNP) in healthy children and adolescents. The authors also determined the proportion of participants exceeding the upper reference limits and acute myocardial infarction cutoff for each assay. Method: Web of Science, SPORTDiscus, MEDLINE, ScienceDirect, and Scopus databases were systematically searched up to November 2017. Studies were screened and quality-assessed; the data was systematically extracted and analyzed. Results: From 751 studies initially identified, 14 met the inclusion criteria for data extraction. All 3 biomarkers were increased significantly after exercise. A decrease from postexercise to 24 hours was noted in cTnT and cTnI, although this decrease was only statistically significant for cTnT. The upper reference limit was exceeded by 76% of participants for cTnT, a 51% for cTnI, and a 13% for NT-proBNP. Furthermore, the cutoff value for acute myocardial infarction was exceeded by 39% for cTnT and a 11% for cTnI. Postexercise peak values of cTnT were associated with duration and intensity (Q (3) = 28.3, P < .001) while NT-proBNP peak values were associated with duration (Q (2) = 11.9, P = .003). Conclusion: Exercise results in the appearance of elevated levels of cTnT, cTnI, and NT-proBNP in children and adolescents. Postexercise elevations of cTnT and NT-proBNP are associated with exercise duration and intensity.

Restricted access

Alex J. Wadley, Ida S. Svendsen and Michael Gleeson

Altitude exposure can exaggerate the transient increase in markers of oxidative stress observed following acute exercise. However, these responses have not been monitored in endurance-trained cyclists at altitudes typically experienced while training. Endurance trained males (n = 12; mean (± SD) age: 28 ± 4 years, V̇O2max 63.7 ± 5.3 ml/kg/min) undertook two 75-min exercise trials at 70% relative V̇O2max; once in normoxia and once in hypobaric hypoxia, equivalent to 2000m above sea level (hypoxia). Blood samples were collected before, immediately after and 2 h postexercise to assess plasma parameters of oxidative stress (protein carbonylation (PC), thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC) and catalase activity (CAT)). Participants cycled at 10.5% lower power output in hypoxia vs. normoxia, with no differences in heart rate, blood lactate or rating of perceived exertion observed. PC increased and decreased immediately after exercise in hypoxia and normoxia respectively (nmol/mg/protein: Normoxia—0.3 ± 0.1, Hypoxia + 0.4 ± 0.1; both p < .05). CAT increased immediately postexercise in both trials, with the magnitude of change greater in hypoxia (nmol/min/ml: Normoxia + 12.0 ± 5.0, Hypoxia + 27.7 ± 4.8; both p < .05). CAT was elevated above baseline values at 2 h postexercise in Hypoxia only (Normoxia + 0.2 ± 2.4, Hypoxia + 18.4 ± 5.2; p < .05). No differences were observed in the changes in TBARS and TAC between hypoxia and normoxia. Trained male cyclists demonstrated a differential pattern/ timecourse of changes in markers of oxidative stress following submaximal exercise under hypoxic vs. normoxic conditions.

Restricted access

Romain Meeusen and Phil Watson

It is clear that the cause of fatigue is complex, infuenced by both events occurring in the periphery and the central nervous system (CNS). It has been suggested that exercise-induced changes in serotonin (5-HT), dopamine (DA), and noradrenaline (NA) concentrations contribute to the onset of fatigue during prolonged exercise. Serotonin has been linked to fatigue because of its documented role in sleep, feelings of lethargy and drowsiness, and loss of motivation, whereas increased DA and NA neurotransmission favors feelings of motivation, arousal, and reward. 5-HT has been shown to increase during acute exercise in running rats and to remain high at the point of fatigue. DA release is also elevated during exercise but appears to fall at exhaustion, a response that may be important in the fatigue process. The rates of 5-HT and DA/NA synthesis largely depend on the peripheral availability of the amino acids tryptophan (TRP) and tyrosine (TYR), with increased brain delivery increasing serotonergic and DA/NA activity, respectively. TRP, TYR, and the branched-chained amino acids (BCAAs) use the same transporter to pass through the blood-brain barrier, meaning that the plasma concentration ratio of these amino acids is thought to be a very important marker of neurotransmitter synthesis. Pharmacological manipulation of these neurotransmitter systems has provided support for an important role of the CNS in the development of fatigue. Work conducted over the last 20 y has focused on the possibility that manipulation of neurotransmitter precursors may delay the onset of fatigue. Although there is evidence that BCAA (to limit 5-HT synthesis) and TYR (to elevate brain DA/NA) ingestion can influence perceived exertion and some measures of mental performance, the results of several apparently well-controlled laboratory studies have yet to demonstrate a clear positive effect on exercise capacity or performance. There is good evidence that brain neurotransmitters can play a role in the development of fatigue during prolonged exercise, but nutritional manipulation of these systems through the provision of amino acids has proven largely unsuccessful.

Restricted access

Dariush Sheikholeslami-Vatani, Slahadin Ahmadi and Hassan Faraji

sensitive tools for evaluating these physiological processes ( Kangas et al., 2017 ). Various types of cellular stress stimuli have been shown to trigger apoptosis. Strenuous acute exercise directly or indirectly can induce a stress response and apoptosis in working skeletal muscles ( Podhorska-Okołów et

Restricted access

Blai Ferrer-Uris, Albert Busquets and Rosa Angulo-Barroso

associated with repeated bouts of acute exercise ( Griffin et al., 2011 ; Hopkins, Davis, Vantieghem, Whalen, & Bucci, 2012 ). In adults, acute exercise seems to transiently affect brain function through an increase in the concentration of certain neurochemicals, such as neurotransmitters (e

Restricted access

Thomas Finkenzeller, Sabine Würth, Michael Doppelmayr and Günter Amesberger

, perceptual tasks, visual search tasks, memory tasks), exercise duration, exercise intensity, and fitness level. Furthermore, Lambourne and Tomporowski ( 2010 ) obtained different effect sizes depending on when the cognitive assessment was taken during acute exercise, indicating a decline in the initial 20

Open access

Keishi Soga, Keita Kamijo and Hiroaki Masaki

studies have explored the effects of a single bout of acute exercise on memory functions. These studies have consistently indicated that retrieval performance improved when learning or when the encoding phase was performed after acute aerobic exercise ( Etnier, Labban, Piepmeier, Davis, & Henning, 2014

Restricted access

Carolina Menezes Fiorelli, Emmanuel Gomes Ciolac, Lucas Simieli, Fabiana Araújo Silva, Bianca Fernandes, Gustavo Christofoletti and Fabio Augusto Barbieri

regulation of exercise-induced cognitive responses. However, the previous studies have analyzed the effects of acute exercise in neurologically healthy individuals. Therefore, an important lack in literature is about the effects of acute aerobic exercise in cognition impairments in PD. Therefore, 2 questions

Restricted access

Austin T. Robinson, Adriana Mazzuco, Ahmad S. Sabbahi, Audrey Borghi-Silva and Shane A. Phillips

.4 Note . Data presented as mean ±  SD . There was no significant main effect for supplementation or acute exercise or an interaction effect for these measures. SBP = systolic blood pressure; DBP = diastolic blood pressure; MAP = mean arterial pressure; AUX = augmentation index; AUX75 = a normalization

Restricted access

Ilkka Heinonen, Jukka Kemppainen, Toshihiko Fujimoto, Juhani Knuuti and Kari K. Kalliokoski

-Czernik, 2012 ). Human bone marrow circulation responds to acute exercise ( Heinonen et al., 2013a , 2013b ) and local heat stress ( Heinonen et al., 2011a ), although to a lesser degree than in contracting skeletal muscles ( Heinonen et al., 2007 , 2010a , 2011b , 2015 ). In addition to its perfusion, the