Search Results

You are looking at 71 - 80 of 174 items for :

  • "calorimetry" x
Clear All
Restricted access

Seth A. Creasy, Renee J. Rogers, Thomas D. Byard, Robert J. Kowalsky and John M. Jakicic

Background:

Identifying strategies to increase energy expenditure (EE) may help combat the harmful effects of sedentary behavior. This study examined EE during sitting, standing, and walking.

Methods:

Participants (N = 74) were randomized to 2 of the following activities: sitting using a laptop computer (SIT-C), sitting watching television (SIT-T), standing watching television (STAND), and walking at a self-selected pace ≤3.0 (mph) (WALK). Each activity lasted 15 minutes with a 3-minute transition period between activities. The experimental conditions were: SIT-C to STAND (N = 18), SIT-T to WALK (N = 18), STAND to SIT-C (N = 20), and WALK to SIT-T (N = 18). EE was measured using indirect calorimetry.

Results:

Based on the first activity performed, EE during WALK (55.92 ± 14.19 kcal) was significantly greater than SIT-C (19.63 ± 6.90 kcal), SIT-T (18.66 ± 4.01 kcal), and STAND (21.92 ± 5.08 kcal) (P < .001). Cumulative EE in SIT-T to WALK (74.50 ± 17.88 kcal) and WALK to SIT-T (82.72 ± 21.70 kcal) was significantly greater than EE in SIT-C to STAND (45.38 ± 14.78 kcal) and STAND to SIT-C (45.64 ± 9.69 kcal) (P < .001).

Conclusions:

Conclusion: Substituting periods of sitting or standing with walking significantly increases EE, but substituting periods of sitting with standing may not affect EE. Thus, the potential benefits of standing as opposed to sitting need further investigation beyond the role of EE.

Restricted access

Deirdre M. Harrington, Kieran P. Dowd, Catrine Tudor-Locke and Alan E. Donnelly

The number of steps/minute (i.e., cadence) that equates to moderate intensity in adolescents is not known. To that end, 31 adolescent females walked on a treadmill at 5 different speeds while wearing an ActivPAL accelerometer and oxygen uptake was recorded by indirect calorimetry. The relationship between metabolic equivalents (METs) and cadence was explored using 3 different analytical approaches. Cadence was a significant predictor of METs (r=.70; p<.001). Moderate intensity (3 METs) corresponded to 94 or 114 steps/minute based on the mixed model and ROC analysis, respectively. These two values, and a practical value of 100 steps/minute, were cross-validated on an independent sample of 33 adolescent females during over-ground walking at 3 speeds. The sensitivity and specificity of each value correctly identifying 3 METs were 98.5% and 87.2% for 94 steps/minute, 72.9% and 98.8 for 114 steps/minute and 96.5% and 95.7% for 100 steps/minute. Compromising on a single cadence of 100 steps/minute would be a practical value that approximates moderate intensity in adolescent females and can be used for physical activity interpretation and promotion.

Restricted access

Sally A. Sherman, Renee J. Rogers, Kelliann K. Davis, Ryan L. Minster, Seth A. Creasy, Nicole C. Mullarkey, Matthew O’Dell, Patrick Donahue and John M. Jakicic

Background:

Whether the energy cost of vinyasa yoga meets the criteria for moderate-to-vigorous physical activity has not been established.

Purpose:

To compare energy expenditure during acute bouts of vinyasa yoga and 2 walking protocols.

Methods:

Participants (20 males, 18 females) performed 60-minute sessions of vinyasa yoga (YOGA), treadmill walking at a self-selected brisk pace (SELF), and treadmill walking at a pace that matched the heart rate of the YOGA session (HR-Match). Energy expenditure was assessed via indirect calorimetry.

Results:

Energy expenditure was significantly lower in YOGA compared with HR-Match (difference = 79.5 ± 44.3 kcal; P < .001) and SELF (difference = 51.7 ± 62.6 kcal; P < .001), but not in SELF compared with HR-Match (difference = 27.8 ± 72.6 kcal; P = .054). A similar pattern was observed for metabolic equivalents (HR-Match = 4.7 ± 0.8, SELF = 4.4 ± 0.7, YOGA = 3.6 ± 0.6; P < .001). Analyses using only the initial 45 minutes from each of the sessions, which excluded the restorative component of YOGA, showed energy expenditure was significantly lower in YOGA compared with HR-Match (difference = 68.0 ± 40.1 kcal; P < .001) but not compared with SELF (difference = 15.1 ± 48.7 kcal; P = .189).

Conclusions:

YOGA meets the criteria for moderate-intensity physical activity. Thus, YOGA may be a viable form of physical activity to achieve public health guidelines and to elicit health benefits.

Restricted access

Brian R. Hunt, James D. George, Pat R. Vehrs, A. Garth Fisher and Gilbert W. Fellingham

The purpose of this study was to validate the ability of the 1-mile jog test to predict VO2max in fit teenagers. Forty-one males and 42 females performed the steady-state, submaximal jogging test on an indoor track, along with a maximal graded exercise test (GXT) on a treadmill. Open circuit calorimetry was used during the GXT to measure maximal oxygen consumption (VO2max). We generated the following age-specific prediction equation applicable to boys and girls 13–17 years old (n = 83, Radj = .88, SEE = 3.26 ml · kg−1 · min−1): VO2max = 92.91 + 6.50 × gender (0 = female, 1 = male) − 0.141 × body mass (kg) − 1.562 × jog time (min) − 0.125 × heart rate (bpm). Cross-validation results were acceptable (SEEpress = 3.44 ml · kg−1 · min−1). As a field test, the submaximal 1-mile jogging test may alleviate problems associated with pacing, motivation, discouragement, injury, and fatigue that are sometimes associated with maximal effort timed or distance run tests.

Restricted access

Mathieu L. Maltais, Karine Perreault, Alexandre Courchesne-Loyer, Jean-Christophe Lagacé, Razieh Barsalani and Isabelle J. Dionne

The decrease in resting energy expenditure (REE) and fat oxidation with aging is associated with an increase in fat mass (FM), and both could be prevented by exercise such as resistance training. Dairy consumption has also been shown to promote FM loss in different subpopulations and to be positively associated with fat oxidation. Therefore, we sought to determine whether resistance exercise combined with dairy supplementation could have an additive impact on FM and energy metabolism, especially in individuals with a deficit in muscle mass. Twenty-six older overweight sarcopenic men (65 ± 5 years old) were recruited for the study. They participated in 4 months of resistance exercise and were randomized into three groups for postexercise shakes (control, dairy, and nondairy isocaloric and isoprotein supplement with 375 ml and ~280 calories per shake). Body composition was measured by dual X-ray absorptiometry and REE by indirect calorimetry. Fasting glucose, insulin, leptin, inflammatory profile, and blood lipid profile were also measured. Significant decreases were observed with FM only in the dairy supplement group; no changes were observed for any other variables. To conclude, FM may decrease without changes in metabolic parameters during resistance training and dairy supplementation with no caloric restriction without having any impact on metabolic properties. More studies are warranted to explain this significant decrease in FM.

Restricted access

Steven Gastinger, Guillaume Nicolas, Anthony Sorel, Hamid Sefati and Jacques Prioux

The aim of this article was to compare 2 portable devices (a heart-rate monitor and an electromagnetic-coil system) that evaluate 2 different physiological parameters—heart rate (HR) and ventilation (VE)—with the objective of estimating energy expenditure (EE). The authors set out to prove that VE is a more pertinent setting than HR to estimate EE during light to moderate activities (sitting and standing at rest and walking at 4, 5, and 6 km/hr). Eleven healthy men were recruited to take part in this study (27.6 ± 5.4 yr, 73.7 ± 9.7 kg). The authors determined the relationships between HR and EE and between VE and EE during light to moderate activities. They compared EE measured by indirect calorimetry (EEREF) with EE estimated by HR monitor (EEHR) and EE estimated by electromagnetic coils (EEMAG) in upright sitting and standing positions and during walking exercises. They compared EEREF with EEHR and EEMAG. The results showed no significant difference between the values of EEREF and EEMAG. However, they showed several significant differences between the values of EEREF and EEHR (for standing at rest and walking at 5 and 6 km/hr). These results showed that the electromagnetic-coil system seems to be more accurate than the HR monitor to estimate EE at rest and during exercise. Taking into consideration these results, it would be interesting to associate the parameters VE and HR to estimate EE. Furthermore, a new version of the electromagnetic-coil device was recently developed and provides the possibility to perform measurement under daily life conditions.

Restricted access

Jeanne F. Nichols, Hilary Aralis, Sonia Garcia Merino, Michelle T. Barrack, Lindsay Stalker-Fader and Mitchell J. Rauh

There is a growing need to accurately assess exercise energy expenditure (EEE) in athletic populations that may be at risk for health disorders because of an imbalance between energy intake and energy expenditure. The Actiheart combines heart rate and uniaxial accelerometry to estimate energy expenditure above rest. The authors’ purpose was to determine the utility of the Actiheart for predicting EEE in female adolescent runners (N = 39, age 15.7 ± 1.1 yr). EEE was measured by indirect calorimetry and predicted by the Actiheart during three 8-min stages of treadmill running at individualized velocities corresponding to each runner’s training, including recovery, tempo, and 5-km-race pace. Repeated-measures ANOVA with Bonferroni post hoc comparisons across the 3 running stages indicated that the Actiheart was sensitive to changes in intensity (p < .01), but accelerometer output tended to plateau at race pace. Pairwise comparisons of the mean difference between Actiheart- and criterion-measured EEE yielded values of 0.0436, 0.0539, and 0.0753 kcal · kg−1 · min−1 during recovery, tempo, and race pace, respectively (p < .0001). Bland–Altman plots indicated that the Actiheart consistently underestimated EEE except in 1 runner’s recovery bout. A linear mixed-model regression analysis with height as a covariate provided an improved EEE prediction model, with the overall standard error of the estimate for the 3 speeds reduced to 0.0101 kcal · kg−1 · min−1. Using the manufacturer’s equation that combines heart rate and uniaxial motion, the Actiheart may have limited use in accurately assessing EEE, and therefore energy availability, in young, female competitive runners.

Restricted access

James Cameron Morehen, Warren Jeremy Bradley, Jon Clarke, Craig Twist, Catherine Hambly, John Roger Speakman, James Peter Morton and Graeme Leonard Close

Rugby League is a high-intensity collision sport competed over 80 min. Training loads are monitored to maximize recovery and assist in the design of nutritional strategies although no data are available on the total energy expenditure (TEE) of players. We therefore assessed resting metabolic rate (RMR) and TEE in six Super League players over 2 consecutive weeks in-season including one game per week. Fasted RMR was assessed followed by a baseline urine sample before oral administration of a bolus dose of hydrogen (deuterium 2H) and oxygen (18O) stable isotopes in the form of water (2H2 18O). Every 24 hr thereafter, players provided urine for analysis of TEE via DLW method. Individual training load was quantified using session rating of perceived exertion (sRPE) and data were analyzed using magnitude-based inferences. There were unclear differences in RMR between forwards and backs (7.7 ± 0.5 cf. 8.0 ± 0.3 MJ, respectively). Indirect calorimetry produced RMR values most likely lower than predictive equations (7.9 ± 0.4 cf. 9.2 ± 0.4 MJ, respectively). A most likely increase in TEE from Week 1 to 2 was observed (17.9 ± 2.1 cf. 24.2 ± 3.4 MJ) explained by a most likelyincrease in weekly sRPE (432 ± 19 cf. 555 ± 22 AU), respectively. The difference in TEE between forward and backs was unclear (21.6 ± 4.2 cf. 20.5 ± 4.9 MJ, respectively). We report greater TEE than previously reported in rugby that could be explained by the ability of DLW to account for all match and training-related activities that contributes to TEE.

Restricted access

Shelby L. Francis, Ajay Singhvi, Eva Tsalikian, Michael J. Tansey and Kathleen F. Janz

Purpose:

Determining fitness is important when assessing adolescents with type 1 diabetes mellitus (T1DM). Submaximal tests estimate fitness, but none have been validated in this population. This study cross-validates the Ebbeling and Nemeth equations to predict fitness (VO2max (ml/kg/min)) in adolescents with T1DM.

Methods:

Adolescents with T1DM (n = 20) completed a maximal treadmill test using indirect calorimetry. Participants completed one 4-min stage between 2.0 and 4.5 mph and 5% grade (Ebbeling/Nemeth protocol). Speed and grade were then increased until exhaustion. Predicted VO2max was calculated using the Ebbeling and Nemeth equations and compared with observed VO2max using paired t tests. Pearson correlation coefficients, 95% confidence intervals, coefficients of determination (R2), and total error (TE) were calculated.

Results:

The mean observed VO2max was 47.0 ml/kg/min (SD = 6.9); the Ebbeling and Nemeth mean predictions were 42.4 (SD = 9.4) and 43.5 ml/kg/min (SD = 6.9), respectively. Paired t tests resulted in statistically significant (p < .01) mean differences between observed and predicted VO2max for both predictions. The association between the Ebbeling prediction and observed VO2max was r = .90 (95% CI = 0.76, 0.96), R 2 = .81, and TE = 6.5 ml/kg/min. The association between the Nemeth prediction and observed VO2max was r = .81 (95% CI = 0.57, 0.92), R 2 = .66, and TE = 5.6 ml/kg/min.

Conclusion:

The Nemeth submaximal treadmill protocol provides a better estimate of fitness than the Ebbeling in adolescents with T1DM.

Restricted access

Jean M. Nyakayiru, Kristin L. Jonvik, Philippe J.M. Pinckaers, Joan Senden, Luc J.C. van Loon and Lex B. Verdijk

While the majority of studies reporting ergogenic effects of dietary nitrate have used a multiday supplementation protocol, some studies suggest that a single dose of dietary nitrate before exercise can also improve subsequent performance. We aimed to compare the impact of acute and 6-day sodium nitrate supplementation on oxygen uptake (V̇O2) and time-trial performance in trained cyclists. Using a randomized, double-blind, cross-over design, 17 male cyclists (25 ± 4 y, V̇O2peak 65 ± 4 ml·kg-1·min-1, Wmax 411 ± 35 W) were subjected to 3 different trials; 5 days placebo and 1 day sodium nitrate supplementation (1-DAY); 6 days sodium nitrate supplementation (6-DAY); 6 days placebo supplementation (PLA). Nitrate was administered as 1097 mg sodium nitrate providing 800 mg (~12.9 mmol) nitrate per day. Three hours after ingestion of the last supplemental bolus, indirect calorimetry was performed while subjects performed 30 min of exercise at 45% Wmax and 30 min at 65% Wmax on a cycle ergometer, followed by a 10 km time-trial. Immediately before exercise, plasma [nitrate] and [nitrite] increased to a similar extent during the 6-DAY and 1-DAY trial, but not with PLA (plasma nitrite: 501 ± 205, 553 ± 278, and 239 ± 74 nM, respectively; p < .001). No differences were observed between interventions in V̇O2 during submaximal exercise, or in time to complete the time-trial (6-DAY: 1004 ± 61, 1-DAY: 1022 ± 72, PLA: 1017 ± 71 s; p = .28). We conclude that both acute and 6-days of sodium nitrate supplementation do not alter V̇O2 during submaximal exercise or improve time-trial performance in highly trained cyclists, despite increasing plasma [nitrate] and [nitrite].