Search Results

You are looking at 71 - 80 of 229 items for :

  • "dual-energy X-ray absorptiometry" x
Clear All
Restricted access

Michael R. Esco, Brett S. Nickerson, Sara C. Bicard, Angela R. Russell and Phillip A. Bishop

The purpose of this investigation was to evaluate measurements of body-fat percentage (BF%) in 4 body-mass-index- (BMI) -based equations and dual-energy X-ray absorptiometry (DXA) in individuals with Down syndrome (DS). Ten male and 10 female adults with DS volunteered for this study. Four regression equations for estimating BF% based on BMI previously developed by Deurenberg et al. (DEBMI-BF%), Gallagher et al. (GABMI-BF%), Womersley & Durnin (WOBMI-BF%), and Jackson et al. (JABMI-BF%) were compared with DXA. There was no significant difference (p = .659) in mean BF% values between JABMI-BF% (BF% = 40.80% ± 6.3%) and DXA (39.90% ± 11.1%), while DEBMI-BF% (34.40% ± 9.0%), WOBMI-BF% (35.10% ± 9.4%), and GABMI-BF% (35.10% ± 9.4%) were significantly (p < .001) lower. The limits of agreement (1.96 SD of the constant error) varied from 9.80% to 16.20%. Therefore, BMI-based BF% equations should not be used in individuals with DS.

Restricted access

Hawley Chase Almstedt and Zakkoyya H. Lewis

Context:

Intermittent pneumatic compression (IPC) is a common therapeutic modality used to reduce swelling after trauma and prevent thrombosis due to postsurgical immobilization. Limited evidence suggests that IPC may decrease the time needed to rehabilitate skeletal fractures and increase bone remodeling.

Objective:

To establish feasibility and explore the novel use of a common therapeutic modality, IPC, on bone mineral density (BMD) at the hip of noninjured volunteers.

Design:

Within-subjects intervention.

Setting:

University research laboratory.

Participants:

Noninjured participants (3 male, 6 female) completed IPC treatment on 1 leg 1 h/d, 5 d/wk for 10 wk. Pressure was set to 60 mm Hg when using the PresSsion and Flowtron Hydroven compression units.

Main Outcome Measures:

Dual-energy X-ray absorptiometry was used to assess BMD of the hip in treated and nontreated legs before and after the intervention. Anthropometrics, regular physical activity, and nutrient intake were also assessed.

Results:

The average number of completed intervention sessions was 43.4 (± 3.8) at an average duration of 9.6 (± 0.8) wk. Repeated-measures analysis of variance indicated a significant time-by-treatment effect at the femoral neck (P = .023), trochanter (P = .027), and total hip (P = .008). On average, the treated hip increased 0.5–1.0%, while the nontreated hip displayed a 0.7–1.9% decrease, depending on the bone site.

Conclusion:

Results of this exploratory investigation suggest that IPC is a therapeutic modality that is safe and feasible for further investigation on its novel use in optimizing bone health.

Restricted access

Ann M. Swartz, Sergey Tarima, Nora E. Miller, Teresa L. Hart, Elizabeth K. Grimm, Aubrianne E. Rote and Scott J. Strath

The purpose of the study was to determine the relationship between sedentary behavior (SB), physical activity (PA), and body fat (total, abdominal) or body size (body-mass index [BMI], waist circumference [WC]) in community-dwelling adults 50 yr old and over. This study included 232 ambulatory adults (50–87 yr, 37.4% ± 9.6% body fat [BF]). Average daily time spent in SB (<100 counts/min) and light (100–759 counts/min), lifestyle-moderate (760–1,951 counts/min), walking-moderate (1,952–5,724cts/min), and vigorous-intensity (≥5,725 counts/min) PA were determined by accelerometer and corrected for wear time. BF was measured with dual-energy X-ray absorptiometry. SB was positively related to measures of BF. Measures of SB, PA, and gender accounted for 55.6% of the variance in total BF, 32.4% of the variance in abdominal fat, and 28.0% of the variance in WC. SB, PA, and age accounted for 27.1% of the variance in BMI. Time spent in SB should be considered when designing obesity interventions for adults 50 yr old and over.

Restricted access

Johann C. Bilsborough, Thomas Kempton, Kate Greenway, Justin Cordy and Aaron J. Coutts

Purpose:

To compare development and variations in body composition of early-, mid-, and late-career professional Australian Football (AF) players over 3 successive seasons.

Methods:

Regional and total-body composition (body mass [BM], fat mass [FM], fat-free soft-tissue mass [FFSTM], and bone mineral content [BMC]) were assessed 4 times, at the same time of each season—start preseason (SP), end preseason (EP), midseason (MS), and end season (ES)—from 22 professional AF players using pencil-beam dual-energy X-ray absorptiometry. Nutritional intake for each player was evaluated concomitantly using 3-d food diaries. Players were classified according to their age at the beginning of the observational period as either early- (<21 y, n = 8), mid- (21 to 25 y, n = 9), or late- (>25 y, n = 5) career athletes.

Results:

Early-career players had lower FFSTM, BMC, and BM than mid- and late-career throughout. FM and %FM had greatest variability, particularly in the early-career players. FM reduced and FFSTM increased from SP to EP, while FM and FFSTM decreased from EP to MS. FM increased and FFSTM decreased from MS to ES, while FM and FFSTM increased during the off-season.

Conclusions:

Early-career players may benefit from greater emphasis on specific nutrition and resistance-training strategies aimed at increasing FFSTM, while all players should balance training and diet toward the end of season to minimize increases in FM.

Restricted access

April J. Chambers, Alison L. Sukits, Jean L. McCrory and Rakié Cham

Age, obesity, and gender can have a significant impact on the anthropometrics of adults aged 65 and older. The aim of this study was to investigate differences in body segment parameters derived using two methods: (1) a dual-energy x-ray absorptiometry (DXA) subject-specific method (Chambers et al., 2010) and (2) traditional regression models (de Leva, 1996). The impact of aging, gender, and obesity on the potential differences between these methods was examined. Eighty-three healthy older adults were recruited for participation. Participants underwent a whole-body DXA scan (Hologic QDR 1000/W). Mass, length, center of mass, and radius of gyration were determined for each segment. In addition, traditional regressions were used to estimate these parameters (de Leva, 1996). A mixed linear regression model was performed (α = 0.05). Method type was significant in every variable of interest except forearm segment mass. The obesity and gender differences that we observed translate into differences associated with using traditional regressions to predict anthropometric variables in an aging population. Our data point to a need to consider age, obesity, and gender when utilizing anthropometric data sets and to develop regression models that accurately predict body segment parameters in the geriatric population, considering gender and obesity.

Restricted access

Alex S. Ribeiro, Fábio Luiz C. Pina, Soraya R. Dodero, Danilo R. P. Silva, Brad J. Schoenfeld, Paulo Sugihara Júnior, Rodrigo R. Fernandes, Décio S. Barbosa, Edilson S. Cyrino and Julio Tirapegui

The aim of this study was to analyze the effects of 8 weeks of conjugated linoleic acid (CLA) supplementation associated with aerobic exercise on body fat and lipid profile on obese women. We performed a randomized, double-blinded and placebo-controlled trial with 28 obese women who received 3.2 g/day of CLA or 4 g/day of olive oil (placebo group) while performing an 8-week protocol of aerobic exercise. Dietary intake (food record), body fat (dual-energy X-ray absorptiometry), and biochemical analysis (blood sample) were assessed before and after the intervention period. Independent of CLA supplementation, both groups improved (p < .05) oxygen uptake (CLA group, 13.2%; PLC group, 14.8%), trunk fat (CLA group, −1.0%; PLC group, −0.5%), leg fat (CLA group, −1.0%; PLC group, −1.6%), and total body fat (CLA group, −1.7%; PLC group, −1.3%) after the 8-week intervention. No main effect or Group × Time interaction was found for total cholesterol, triglycerides, and plasma lipoproteins (p > .05). We conclude that CLA supplementation associated with aerobic exercise has no effect on body fat reduction and lipid profile improvements over placebo in young adult obese women.

Restricted access

Gladys Block, Christopher D. Jensen, Torin J. Block, Jean Norris, Tapashi B. Dalvi and Ellen B. Fung

Background:

Understanding and increasing physical activity requires assessment of occupational, home, leisure and sedentary activities.

Methods:

A physical activity questionnaire was developed using data from a large representative U.S. sample; includes occupational, leisure and home-based domains; and produces estimates of energy expenditure, percent body fat, minutes in various domains, and meeting recommendations. It was tested in 396 persons, mean age 44 years. Estimates were evaluated in relation to percent body fat measured by dual-energy x-ray absorptiometry.

Results:

Median energy expenditure was 2,365 kcal (women) and 2,960 kcal (men). Women spent 35.1 minutes/day in moderate household activities, 13.0 minutes in moderate leisure and 4.0 minutes in vigorous activities. Men spent 18.0, 22.5 and 15.6 minutes/day in those activities, respectively. Men and women spent 276.4 and 257.0 minutes/day in sedentary activities. Respondents who met recommendations through vigorous activities had significantly lower percent body fat than those who did not, while meeting recommendations only through moderate activities was not associated with percent body fat. Predicted and observed percent body fat correlated at r = .73 and r = .82 for men and women respectively, P < .0001.

Conclusions:

This questionnaire may be useful for understanding health effects of different components of activity, and for interventions to increase activity levels.

Restricted access

Han C.G. Kemper

This paper reviews the growth and development of skeletal mass in youth and the effects of physical activity upon the bone mass in young people. The different methods to measure the bone mass are described such as anthropometrics, radiographics, dual energy X-ray absorptiometry, quantitative computed tomography, and ultrasound. Two different mechanisms are important for the formation and plasticity of bone: a central hormonal mechanism (with estrogen production) and a local mechanism (based on mechanical forces of gravity and muscle contractions). This local mechanism is closely connected to physical activity patterns and therefore discussed in more detail. Thereafter the natural course of the development of the bone mass during youth is described, taking into account the pubertal stages of boys and girls and also the age at which the maximal bone mass (peak bone mineral density) will be reached. The last part is devoted to the effects of physical activity on bone mass based on results of randomized controlled trials. Although the number of experimental studies are scarce, significant effects of weight bearing activity and high impact strength training programs are shown on the side specific bone mineral density in both boys and girls.

Restricted access

Michael J. Davies, Gail P. Dalsky and Paul M. Vanderburgh

This study employed allometry to scale maximal oxygen uptake (V̇O2 max) by body mass (BM) and lean body mass (LBM) in healthy older men. Ratio standards (ml · kg−1 · min−1) derived by dividing absolute V̇O2 max (L · min−1) by BM or LBM often fail to control for the body size variable. The subjects were 73 older men (mean ± SD: age = 69.7 ± 4.3 yrs, BM = 80.2 ± 9.6 kg, height = 174.1 ± 6.9 cm). V̇O2 max was assessed on a treadmill with the modified Balke protocol (V̇O2 max = 2.2 ± 0.4 L · min−1). Body fat (27.7 ± 6.4%) was assessed with dual energy x-ray absorptiometry. Allometry applied to BM and V̇O2 max determined the BM exponent to be 0.43, suggesting that heavier older men are being penalized when ratio standards are used. Allometric scaling applied to LBM revealed the LBM exponent to be 1.05 (not different from the ratio standard exponent of 1.0). These data suggest that the use of ratio standards to evaluate aerobic fitness in older men penalized fatter older men but not those with higher LBM.

Restricted access

Heidi L. Petersen, C. Ted Peterson, Manju B. Reddy, Kathy B. Hanson, James H. Swain, Rick L. Sharp and D. Lee Alekel

This study determined the effect of training on body composition, dietary intake, and iron status of eumenorrheic female collegiate swimmers (n = 18) and divers (n = 6) preseason and after 16 wk of training. Athletes trained on dryland (resistance, strength, fexibility) 3 d/wk, 1.5 h/d and in-water 6 d/wk, nine, 2-h sessions per week (6400 to 10,000 kJ/d). Body-mass index (kg/m2; P = 0.05), waist and hip circumferences (P ≤ 0.0001), whole body fat mass (P = 0.0002), and percentage body fat (P ≤ 0.0001) decreased, whereas lean mass increased (P = 0.028). Using dual-energy X-ray absorptiometry, we found no change in regional lean mass, but fat decreased at the waist (P = 0.0002), hip (P = 0.0002), and thigh (P = 0.002). Energy intake (10,061 ± 3617 kJ/d) did not change, but dietary quality improved with training, as refected by increased intakes of fber (P = 0.036), iron (P = 0.015), vitamin C (P = 0.029), vitamin B-6 (P = 0.032), and fruit (P = 0.003). Iron status improved as refected by slight increases in hemoglobin (P = 0.046) and hematocrit (P = 0.014) and decreases in serum transferrin receptor (P ≤ 0.0001). Studies are needed to further evaluate body composition and iron status in relation to dietary intake in female swimmers.