Search Results

You are looking at 71 - 80 of 2,351 items for :

Clear All
Restricted access

Nobuyuki Inui

An experiment was conducted to examine contextual effects of the magnitude of changes in force on force control in a finger-tapping sequence with an accentuated- (accentuated-force condition) or attenuated-force tap (attenuated-force condition). Participants were trained to produce a finger-tapping sequence with an intertap interval of 500 ms and four force patterns. During practice, visual force feedback pertaining to the two target forces in the tapping sequences was provided. After practice, the participants reproduced the learned tapping sequences in the absence of feedback. A main result was that the last accentuated-force tap affected the first three taps of the tapping sequence. For the accentuated-force conditions, the larger the difference between the first three target forces and the last target force, the larger the first three forces. This indicates the contextual effect of serial position for force control. This effect was not observed, however, under the attenuated-force conditions.

Restricted access

Prue Cormie, Jeffrey M. McBride and Grant O. McCaulley

The objective of this study was to investigate the validity of power measurement techniques utilizing various kinematic and kinetic devices during the jump squat (JS), squat (S) and power clean (PC). Ten Division I male athletes were assessed for power output across various intensities: 0, 12, 27, 42, 56, 71, and 85% of one repetition maximum strength (1RM) in the JS and S and 30, 40, 50, 60, 70, 80, and 90% of 1RM in the PC. During the execution of each lift, six different data collection systems were utilized; (1) one linear position transducer (1-LPT); (2) one linear position transducer with the system mass representing the force (1-LPT+MASS); (3) two linear position transducers (2-LPT); (4) the force plate (FP); (5) one linear position transducer and a force plate (1-LPT+FP); (6) two linear position transducers and a force place (2-LPT+FP). Kinetic and kinematic variables calculated using the six methodologies were compared. Vertical power, force, and velocity differed significantly between 2-LPT+FP and 1-LPT, 1-LPT+MASS, 2-LPT, and FP methodologies across various intensities throughout the JS, S, and PC. These differences affected the load–power relationship and resulted in the transfer of the optimal load to a number of different intensities. This examination clearly indicates that data collection and analysis procedures influence the power output calculated as well as the load–power relationship of dynamic lower body movements.

Restricted access

Nicole A. Dinn and David G. Behm

Purpose:

Studies have both supported and refuted the concept that it is the intent to perform ballistic contractions that determines velocity-specific gains in resistance training. The purpose of this investigation was to determine whether ballistic intent is as effective as ballistic movement in improving muscle activation, force, movement time, and reaction time.

Methods:

Subjects completed 8 wk of punch training. A dynamic (DYN) group trained with elastic resistance bands, and the isometric (ISO) group trained with an unyielding strap. A control (CTRL) group was also tested. Pretesting and posttesting measures included isometric force; electromyography (EMG) of triceps, biceps, pectoralis major, and latissimus dorsi; movement and reaction time of both arms; and a quick-hands test of coordination.

Results:

Triceps iEMG increased by 63% in the ISO group (P = .03). Pectoralis major iEMG increased by 65% in the DYN group (P = .007). Movement time decreased 17.6% in the DYN training group (P = .001). Isometric force did not improve in either training group or in the CTRL group.

Conclusions:

Because of its specificity of movement, dynamic training might be a more appropriate method to improve punching speed for martial artists and boxers. The intent to contract explosively over a short duration does not appear to be beneficial in increasing force production or speed of movement in punching.

Restricted access

Tobias Kalenscher, Karl-Theodor Kalveram and Jürgen Konczak

This study investigated force adaptation in humans during goal-directed flexion forearm motion. The ability of the motor system to adapt to changes in internal or external forces is essential for the successful control of voluntary movement. In a first experiment, we examined how under- or overdamping differentially affected the length of the adaptation and the arm kinematics between force transitions. We found that transitions diverging from a null-force produced larger transition effects than transitions converging to a null force condition, indicating that re-adaptation was less error-prone. Whether the subjects had previously experienced underdamping or the null-force had no significant impact on the spatial trajectory after switching to overdamping. That is, prior force experience had no differential effect on the spatial transition kinematics. However, the transitions underdamping-to-overdamping and underdamping-to–null force did produce differently strong transition effects. These results indicate that exposure to the new force rather than previous force-field experience is responsible for transition- and after-effects. In a second experiment, we investigated whether learning was law-like—that is, whether it generalized to unvisited workspace. Subjects were tested in new, unvisited workspaces in the null-force condition after sufficient training in either force condition. The occurrence of transferred after-effects indicated that adaptation to both positive and negative damping was mediated by rule-based rather than exclusive associative processes.

Restricted access

Jeni R. McNeal, William A. Sands and Michael H. Stone

Purpose:

The aim of this study was to investigate the effects of a maximal repeated-jumps task on force production, muscle activation and kinematics, and to determine if changes in performance were dependent on gender.

Methods:

Eleven male and nine female athletes performed continuous countermovement jumps for 60 s on a force platform while muscle activation was assessed using surface electromyography. Performances were videotaped and digitized (60 Hz). Data were averaged across three jumps in 10-s intervals from the initial jump to the final 10 s of the test.

Results:

No interaction between time and gender was evident for any variable; therefore, all results represent data collapsed across gender. Preactivation magnitude decreased across time periods for anterior tibialis (AT, P < .001), gastrocnemius (GAS, P < .001) and biceps femoris (BF, P = .03), but not for vastus lateralis (VL, P = .16). Muscle activation during ground contact did not change across time for BF; however, VL, G, and AT showed significant reductions (all P < .001). Peak force was reduced at 40 s compared with the initial jumps, and continued to be reduced at 50 and 60 s (all P < .05). The time from peak force to takeoff was greater at 50 and 60 s compared with the initial jumps (P < .05). Both knee fexion and ankle dorsifexion were reduced across time (both P < .001), whereas no change in relative hip angle was evident (P = .10). Absolute angle of the trunk increased with time (P < .001), whereas the absolute angle of the shank decreased (P < .001).

Conclusions:

In response to the fatiguing task, subjects reduced muscle activation and force production and altered jumping technique; however, these changes were not dependent on gender.

Restricted access

Xiaogang Hu and Karl M. Newell

The purpose of this study was to investigate the mechanisms contributing to the different scaling functions between force and force variability in continuous and discrete isometric forces. Muscle forces were simulated with the Fuglevand et al. (1993) model of motor unit recruitment and rate coding, and a range of recruitment and firing properties were manipulated. The influence of time-to-peak force on the discrete force variability was also examined. The results revealed that the peak firing rate, the synchrony between motoneurons, and the recruitment range contributed to the different variability functions in continuous and discrete forces. The shorter time-to-peak force led to higher variability in the peak force. The findings show that the model can produce the distinct properties of the force variability scaling functions in continuous and discrete forces. The simulation results provide preliminary insight into the neuromuscular mechanisms of the different force variability functions in continuous and discrete isometric forces.

Restricted access

Ewald M. Hennig and Mario A. Lafortune

Using data from six male subjects, this study compared ground reaction force and tibial acceleration parameters for running. A bone-mounted triaxial accelerometer and a force platform were employed for data collection. Low peak values were found for the axial acceleration, and a time shift toward the occurrence of the first peak in the vertical force data was present. The time to peak axial acceleration differed significantly from the time to the first force peak, and the peak values of force and acceleration demonstrated only a moderate correlation. However, a high negative correlation was found for the comparison of the peak axial acceleration with the time to peak vertical force. Employing a multiple regression analysis, the peak tibial acceleration could be well estimated using vertical force loading rate and peak horizontal ground reaction force as predictors.

Restricted access

Jacob J. Sosnoff, Sae Young Jae, Kevin Heffernan and Bo Fernhall

The purpose of the current investigation was to examine the relation between cardioballistic impulse and the fluctuations in continuous isometric force production. Subjects produced isometric force via index finger flexion to constant force targets (0.5, 1 and 2 N) with and without visual feedback while beat to beat blood pressure of their middle finger was recorded. Force fluctuations were quantified using distributional statistics. The association between blood pressure oscillations and fluctuations in force output were quantified with coherence analysis. Overall, it was found that force variability (i.e., SD) increased with force level and removal of visual feedback. Coherence values between blood pressure oscillations and force fluctuations were significant and the greatest in the 8–12 Hz bandwidth. There was no effect of force magnitude on the coupling strength between blood pressure oscillations and force production. This coupling was greater in the visual condition. These data suggest that peripheral alterations in blood pressure are related to fluctuations in isometric force production independent of force level and that this interaction is influenced by visual feedback.

Restricted access

Muammer Altun

in human movement control, which is fundamental for daily activities, exercise, and sports. 5 Poor proprioception at a joint may result in an increased likelihood of injury. 6 Knee proprioception is mostly evaluated by assessing JPS and force sense (FS). 7 – 10 Some researchers have argued that

Restricted access

Caroline W. Stegink Jansen, Bruce R. Niebuhr, Daniel J. Coussirat, Dana Hawthorne, Laura Moreno and Melissa Phillip

This cross-sectional study aimed to assess the impact of age and gender on 4 measures of grip and pinch force of well elderly community dwellers and to provide normative values. The hypotheses were that age and gender affect pinch and grip force and that these 2 factors might interact. Hand strength of 224 seniors 65–92 years old was tested. Grip and pinch force decreased in successively older age groups past 65 years. Men’s grip force exceeded that of women in all age groups. Men’s hand-force decline was steeper than that of women over successive age groups, suggesting that gender differences in force decreased with age. Trends were the same for all 4 types of grip- and pinch-force measurement but were most clearly visible in grip and key-pinch force. Norms were provided for seniors age 65–85+ years in 5-yr increments.