Search Results

You are looking at 71 - 80 of 310 items for :

  • "interval training" x
Clear All
Restricted access

Julien Robineau, Mathieu Lacome, Julien Piscione, Xavier Bigard and Nicolas Babault

Purpose:

To assess the impact of 2 high-intensity interval-training (HIT) programs (short interval vs sprint interval training) on muscle strength and aerobic performances in a concurrent training program in amateur rugby sevens players.

Methods:

Thirty-six amateur rugby sevens players were randomly assigned to strength and short interval training (INT), strength and sprint interval training (SIT), or a strength-only training group (CON) during an 8-wk period. Maximal strength and power tests, aerobic measurements (peak oxygen uptake [VO2peak] and maximal aerobic velocity), and a specific repeated-sprint ability (RSA) test were conducted before and immediately after the overall training period.

Results:

From magnitude-based inference and effect size (ES ± 90% confidence limit) analyses, the current study revealed substantial gains in maximal strength and jump-height performance in all groups. The difference in change of slow concentric torque production was greater in CON than in SIT (0.65 ± 0.72, moderate). VO2peak and, consequently, mean performance in the RSA test were improved in the SIT group only (0.64 ± 0.29, moderate; –0.54 ± 0.35, moderate).

Conclusions:

The study did not emphasize interference on strength development after INT but showed a slight impairment of slow concentric torque production gains after SIT. Compared with INT, SIT would appear to be more effective to develop VO2peak and RSA but could induce lower muscle-strength gains, especially at low velocity.

Restricted access

Llion A. Roberts, Kris Beattie, Graeme L. Close and James P. Morton

Purpose:

To test the hypothesis that antioxidants can attenuate high-intensity interval training–induced improvements in exercise performance.

Methods:

Two groups of recreationally active males performed a high-intensity interval running protocol, four times per week for 4 wk. Group 1 (n = 8) consumed 1 g of vitamin C daily throughout the training period, whereas Group 2 (n = 7) consumed a visually identical placebo. Pre- and posttraining, subjects were assessed for VO2max, 10 km time trial, running economy at 12 km/h and distance run on the YoYo intermittent recovery tests level 1 and 2 (YoYoIRT1/2). Subjects also performed a 60 min run before and after training at a running velocity of 65% of pretraining VO2max so as to assess training-induced changes in substrate oxidation rates.

Results:

Training improved (P < .0005) VO2max, 10 km time trial, running economy, YoYoIRT1 and YoYoIRT2 in both groups, although there was no difference (P = .31, 0.29, 0.24, 0.76 and 0.59) between groups in the magnitude of training-induced improvements in any of the aforementioned parameters. Similarly, training also decreased (P < .0005) mean carbohydrate and increased mean fat oxidation rates during submaximal exercise in both groups, although no differences (P = .98 and 0.94) existed between training conditions.

Conclusions:

Daily oral consumption of 1 g of vitamin C during a 4 wk high-intensity interval training period does not impair training-induced improvements in the exercise performance of recreationally active males.

Open access

Rahel Gilgen-Ammann, Wolfgang Taube and Thomas Wyss

Purpose:

To quantify gait asymmetry in well-trained runners with and without previous injuries during interval training sessions incorporating different distances.

Methods:

Twelve well-trained runners participated in 8 high-intensity interval-training sessions on a synthetic track over a 4-wk period. The training consisted of 10 × 400, 8 × 600, 7 × 800, and 6 × 1000-m running. Using an inertial measurement unit, the ground-contact time (GCT) of every step was recorded. To determine gait asymmetry, the GCTs between the left and right foot were compared.

Results:

Overall, gait asymmetry was 3.3% ± 1.4%, and over the course of a training session, the gait asymmetry did not change (F 1,33 = 1.673, P = .205). The gait asymmetry of the athletes with a previous history of injury was significantly greater than that of the athletes without a previous injury. However, this injury-related enlarged asymmetry was detectable only at short (400 m), but not at longer, distances (600–1000 m).

Conclusion:

The gait asymmetry of well-trained athletes differed, depending on their history of injury and the running distance. To detect gait asymmetries, high-intensity runs over relatively short distances are recommended.

Restricted access

Kimberly T. Watanabe, Rory A. Cooper, Annette J. Vosse, Fred D. Baldini and Rick N. Robertson

A survey designed to record training practices of athletes with disabilities was administered to participants in the 1990 and 1991 National Wheelchair Athletic Association Elite and Developmental Athlete Training Camp. Information on age, weight, nature and level of disability, the sport and experience in it, sources of training information, dietary practices, and alcohol and cigarette consumption was requested. The athletes were also asked to report their weekly training practices by quarters for the previous year concerning average number of workouts per week, number of hours per workout, number of miles per week, percent of time spent on speed work and/or interval training per week, number of weight training sessions per week, and the number of competitions entered per quarter. Results indicate that most of the athletes derived much of their training information from personal contact with coaches, other athletes, and sport scientists. Many do not set goals in developing training routines, training diets, or competition schedules.

Restricted access

Lucinda E. Bouillon, Douglas K. Sklenka and Amy C. Driver

Context:

Interval cycle training could positively influence dynamic balance in middle-aged women.

Objective:

To compare training effects of a strength ergometer and a standard ergometer on 3 dynamic balance tests.

Design:

Repeated measures.

Setting:

Laboratory.

Participants:

Seventeen women were randomly assigned to standard (n = 10) or strength cycle ergometry (n = 7). A control group consisted of 7 women.

Intervention:

Ergometry interval training (3 sessions/wk for 4 wk).

Main Outcome Measures:

Three balance tests—the Star Excursion Balance Test (SEBT), timed up-and-go (TUG), and four-square step test (FSST)—were performed at pretraining and 4 wk posttraining.

Results:

Four SEBT directions improved and faster scores for FSST and TUG tests for the standard-cycle group were found, whereas the strength-cycle group only improved their TUG scores. No changes posttraining for the control group.

Conclusions:

Stationary cycle training should be included in the dynamic balance-rehabilitation protocol for middle-aged women.

Restricted access

Jill M. Slade, Hector De Los Santos-Posadas and M. Elaine Cress

This study examined the change in 15K running performance for master runners over 21 years (1978–1998). Official times were collected for 60 male runners from the same running event. Trends in running performance were analyzed with several models (linear, polynomial, and segmented-line). A self-report questionnaire was used to quantify training and to characterize runners. Peak age of running performance was indirectly estimated at 33 years using a second-degree polynomial. The performance trend was also associated with an inflection point at age 41 directly estimated from a nonlinear, segmented, mixed-effects model (95% confidence interval: 38.77–42.44). After age 41, master runners ran nearly 1 min slower each year. Besides age, other parameters that influenced performance over time included type of training (interval training) and body weight. These data might be among the first to describe the trend in running performance for a group of master athletes, most of whom were noncompetitive runners.

Restricted access

Cédric R.H. Lamboley, Donald Royer and Isabelle J. Dionne

The aim of this study was to determine the effects of oral β-hydroxy-β-methylbutyrate (HMB) supplementation (3 g/d) on selected components of aerobic performance and body composition of active college students. Subjects were randomly assigned to either an HMB (n = 8) or a placebo (PLA) group (n = 8) for a 5-wk supplementation period during which they underwent interval training 3 times a week on a treadmill. Aerobic-performance components were measured using a respiratory-gas analyzer. Body composition was determined using dual-energy X-ray absorptiometry. After the intervention, there were significant differences (P < 0.05) between the 2 groups in gains in maximal oxygen consumption (+8.4% for PLA and +15.5% for HMB) and in respiratory-compensation point (+8.6% for PLA and +13.4% for HMB). Regarding body composition, there were no significant differences. The authors concluded that HMB supplementation positively affects selected components of aerobic performance in active college students.

Restricted access

Andrea Di Blasio, Pascal Izzicupo, Emanuele D’Angelo, Sandra Melanzi, Ines Bucci, Sabina Gallina, Angela Di Baldassarre and Giorgio Napolitano

Purpose:

High-intensity aerobic interval training (AIT) has been reported to be more effective than continuous aerobic training (CoAT) to improve metabolic health. The aim of our study was to investigate whether moderate-intensity AIT is more effective than CoAT on metabolic health when applied to a walking training program.

Design/Methods:

Thirty-two postmenopausal women (55.37 ± 3.46 years) were investigated for body composition, plasma glucose, insulin, lipids, adiponectin, HOMA-IR, HOMA-AD, aerobic fitness, dietary habits, and spontaneous physical activity, and randomly assigned to one of two different walking training programs: CoAT or AIT.

Results:

CoAT and AIT elicited the same physiological benefits, including: reduction of plasma glucose, insulin, HOMA-IR and HOMA-AD, and increase of plasma HDL-C, adiponectin, and aerobic fitness.

Conclusions:

An AIT scheme as part of an outdoor walking training program elicits the same physiological adaptations as a CoAT scheme, probably because walking does not promote exercise intensities that elicit greater effects.

Restricted access

Espen Tønnessen, Ida S. Svendsen, Bent R. Rønnestad, Jonny Hisdal, Thomas A. Haugen and Stephen Seiler

One year of training data from 8 elite orienteers were divided into a transition phase (TP), general preparatory phase (GPP), specific preparatory phase (SPP), and competition phase (CP). Average weekly training volume and frequency, hours at different intensities (zones 1–3), cross-training, running, orienteering, interval training, continuous training, and competition were calculated. Training volume was higher in GPP than TP, SPP, and CP (14.9 vs 9.7, 11.5, and 10.6 h/wk, P < .05). Training frequency was higher in GPP than TP (10 vs 7.5 sessions/wk, P < .05). Zone 1 training was higher in GPP than TP, SPP, and CP (11.3 vs 7.1, 8.3, and 7.7 h/wk, P < .05). Zone 3 training was higher in SPP and CP than in TP and GPP (0.9 and 1.1 vs 1.6 and 1.5 h/wk, P < .05). Cross-training was higher in GPP than SPP and CP (4.3 vs 0.8 h/wk, P < .05). Interval training was higher in GPP than TP, SPP, and CP (0.7 vs 0.3 h/wk, P < .05). High-intensity continuous training was higher in GPP than CP (0.9 vs 0.4 h/wk, P < .05), while competition was higher in SPP and CP than in TP and GPP (1.3 and 1.5 vs 0.6 and 0.3 h/wk, P < .01). In conclusion, these champion endurance athletes achieved a progressive reduction in total training volume from GPP to CP via a shortening of each individual session while the number of training sessions remained unchanged. This decrease in training volume was primarily due to a reduction in the number of hours of low-intensity, non-sport-specific cross-training.

Open access

Carl Foster, Jose A. Rodriguez-Marroyo and Jos J. de Koning

Training monitoring is about keeping track of what athletes accomplish in training, for the purpose of improving the interaction between coach and athlete. Over history there have been several basic schemes of training monitoring. In the earliest days training monitoring was about observing the athlete during standard workouts. However, difficulty in standardizing the conditions of training made this process unreliable. With the advent of interval training, monitoring became more systematic. However, imprecision in the measurement of heart rate (HR) evolved interval training toward index workouts, where the main monitored parameter was average time required to complete index workouts. These measures of training load focused on the external training load, what the athlete could actually do. With the advent of interest from the scientific community, the development of the concept of metabolic thresholds and the possibility of trackside measurement of HR, lactate, VO2, and power output, there was greater interest in the internal training load, allowing better titration of training loads in athletes of differing ability. These methods show much promise but often require laboratory testing for calibration and tend to produce too much information, in too slow a time frame, to be optimally useful to coaches. The advent of the TRIMP concept by Banister suggested a strategy to combine intensity and duration elements of training into a single index concept, training load. Although the original TRIMP concept was mathematically complex, the development of the session RPE and similar low-tech methods has demonstrated a way to evaluate training load, along with derived variables, in a simple, responsive way. Recently, there has been interest in using wearable sensors to provide high-resolution data of the external training load. These methods are promising, but problems relative to information overload and turnaround time to coaches remain to be solved.