Search Results

You are looking at 71 - 80 of 279 items for :

Clear All
Restricted access

Non-Eleri Thomas, Stephen-Mark Cooper, Simon P. Williams, Julien S. Baker and Bruce Davies

The purpose of this study was to examine relationships between aerobic fitness (AF), fatness, and coronary-heart-disease (CHD) risk factors in 12- to 13-year-olds. The data were obtained from 208 schoolchildren (100 boys; 108 girls) ages 12.9 ± 0.3 years. Measurements included AF, indices of obesity, blood pressure, blood lipids and lipoproteins, fibrinogen, homocysteine, and C-reactive protein. An inverse relationship was found between AF and fatness (p < .05). Fatness was related to a greater number of CHD risk factors than fitness was (p < .05). Further analysis revealed fatness to be an independent predictor of triglyceride and blood-pressure levels (p < .05). Our findings indicate that, for young people, fatness rather than fitness is independently related to CHD risk factors.

Restricted access

Lindsey E. Miller, Graham R. McGinnis, Brian Kliszczewicz, Dustin Slivka, Walter Hailes, John Cuddy, Charles Dumke, Brent Ruby and John C. Quindry

Oxidative stress occurs as a result of altitude-induced hypobaric hypoxia and physical exercise. The effect of exercise on oxidative stress under hypobaric hypoxia is not well understood.

Purpose:

To determine the effect of high-altitude exercise on blood oxidative stress. Nine male participants completed a 2-d trek up and down Mt Rainer, in North America, at a peak altitude of 4,393 m. Day 1 consisted of steady-pace climbing for 6.25 hr to a final elevation of 3,000 m. The 4,393-m summit was reached on Day 2 in approximately 5 hr. Climb–rest intervals varied but were consistent between participants, with approximately 14 hr of total time including rest periods. Blood samples were assayed for biomarkers of oxidative stress and antioxidant potential at the following time points: Pre (before the trek), 3Kup (at ascent to 3,000 m), 3Kdown (at 3,000 m on the descent), and Post (posttrek at base elevation). Blood serum variables included ferric-reducing antioxidant potential (FRAP), Trolox equivalent antioxidant capacity (TEAC), protein carbonyls (PC), and lipid hydroperoxides. Serum FRAP was elevated at 3Kup and 3Kdown compared with Pre and Post values (p = .004, 8% and 11% increase from Pre). Serum TEAC values were increased at 3Kdown and Post (p = .032, 10% and 18% increase from Pre). Serum PC were elevated at 3Kup and 3Kdown time points (p = .034, 194% and 138% increase from Pre), while lipid hydroperoxides were elevated Post only (p = .004, 257% increase from Pre).

Conclusions:

Findings indicate that high-altitude trekking is associated with increased blood oxidative stress.

Restricted access

Jingmei Dong, Peijie Chen, Qing Liu, Ru Wang, Weihua Xiao and Yajun Zhang

Purpose:

To examine the excessive reactive oxygen species (ROS) mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and the combined effect of glutamine supplementation and diphenyleneiodonium (DPI) on the function of neutrophils induced by overtraining.

Methods:

Fifty male Wistar rats were randomly divided into 5 groups: control group (C), overtraining group (E), DPI-administration group (D), glutamine-supplementation group (G), and combined DPI and glutamine group (DG). Blood was sampled from the orbital vein after rats were trained on treadmill for 11 wk. Cytokine and lipid peroxidation in blood plasma were measured by enzyme-linked immunosorbent assay. The colocalization between gp91phox and p47phox of the NADPH oxidase was detected using immunocytochemistry and confocal microscopy. The activity of NADPH oxidase was assessed by chemiluminescence. Neutrophils’ respiratory burst and phagocytosis function were measured by flow cytometry.

Results:

NADPH oxidase was activated by overtraining. Cytokine and lipid peroxidation in blood plasma and the activity of NADPH oxidase were markedly increased in Group E compared with Group C. Neutrophil function was lower in Group E than Group C. Both lower neutrophils function and higher ROS production were reversed in Group DG. The glutamine and DPI interference alone in Group D and Group G was less effective than DPI and glutamine combined in group DG.

Conclusion:

Activation of NADPH oxidase is responsible for the production of superoxide anions, which leads to excessive ROS and is related to the decrease in neutrophil function induced by overtraining. The combined DPI administration and glutamine supplementation reversed the decreased neutrophil function after overtraining.

Restricted access

Edith Filaire, Alain Massart, Hugues Portier, Matthieu Rouveix, Fatima Rosado, Anne S. Bage, Mylène Gobert and Denys Durand

The aim of this investigation was to assess the effects of 6 wk of eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) supplementation on resting and exercise-induced lipid peroxidation and antioxidant status in judoists. Subjects were randomly assigned to receive a placebo or a capsule of polyunsaturated fatty acids (PUFAs; 600 mg EPA and 400 mg DHA). Blood samples were collected in preexercise and postexercise conditions (judo-training session), both before and after the supplementation period. The following parameters were analyzed: α-tocopherol, retinol, lag phase, maximum rate of oxidation (Rmax) during the propagating chain reaction, maximum amount of conjugated dienes (CDmax) accumulated after the propagation phase, nitric oxide (NO) and malondyaldehide (MDA) concentrations, salivary glutathione peroxidase activity, and the lipid profile. Dietary data were collected using a 7-day dietary record. A significant interaction effect between supplementation and time (p < .01) on triglycerides was noted, with values significantly lower in the n-3 long-chain-PUFA (LCPUFA) group after supplementation than in the placebo group. Significant interaction effects between supplementation and time on resting MDA concentrations and Rmax were found (p = .03 and p = .04, respectively), with elevated values in the n-3 LCPUFA group after supplementation and no change in the placebo group’s levels. The authors observed a significantly greater NO and oxidative-stress increase with exercise (MDA, Rmax, CDmax, and NO) in the n-3 LCPUFA group than with placebo. No main or interaction effects were found for retinol and α-tocopherol. These results indicate that supplementation with n-3 LCPUFAs significantly increased oxidative stress at rest and after a judo-training session.

Restricted access

Melissa J. Crowe, Donna M. O’Connor and Joann E. Lukins

This study aimed to investigate the effects of 6 wk oral supplementation of ß-hydroxy- ß-methylbutyrate (HMB) and HMB combined with creatine monohy-drate (HMBCr) on indices of health in highly trained athletes. Elite, male rugby league players (n = 28) were allocated to 1 of 3 groups: a control group (n = 6), a HMB group (3 g/d; n = 11), or a HMBCr group (3 g/day HMB, 3 g/d Cr; n = 11). Testing prior to, and immediately following, supplementation included a full blood count, plasma testosterone and cortisol, blood electrolytes, lipids, urea and glucose, sperm count and motility, and assessment of psychological state. A 3 X 2 factorial ANOVA revealed no effect of HMB or HMBCr on any of the measured parameters except minor changes in blood bicarbonate and blood monocyte and lymphocyte counts. Blood bicarbonate was significantly decreased in the HMB post-supplementation sample compared to the control and HMBCr groups. Blood monocyte and lymphocyte counts showed no within-group changes for HMB or HMBCr supplementation but were significantly different from the control. However, the majority of these readings remained within normal range. HMB and HMBCr were concluded to have no adverse effects on the parameters evaluated in this study when taken orally by highly trained male athletes over a 6-wk period.

Restricted access

Patrick Gray, Andrew Chappell, Alison McE Jenkinson, Frank Thies and Stuart R. Gray

Due to the potential anti-inflammatory properties of fish-derived long chain n-3 fatty acids, it has been suggested that athletes should regularly consume fish oils—although evidence in support of this recommendation is not clear. While fish oils can positively modulate immune function, it remains possible that, due to their high number of double bonds, there may be concurrent increases in lipid peroxidation. The current study aims to investigate the effect of fish oil supplementation on exercise-induced markers of oxidative stress and muscle damage. Twenty males underwent a 6-week double-blind randomized placebo-controlled supplementation trial involving two groups (fish oil or placebo). After supplementation, participants undertook 200 repetitions of eccentric knee contractions. Blood samples were taken presupplementation, postsupplementation, immediately, 24, 48, and 72 hr postexercise and muscle soreness/maximal voluntary contraction (MVC) assessed. There were no differences in creatine kinase, protein carbonyls, endogenous DNA damage, muscle soreness or MVC between groups. Plasma thiobarbituric acid reactive substances (TBARS) were lower (p < .05) at 48 and 72 hr post exercise and H2O2 stimulated DNA damage was lower (p < .05) immediately postexercise in the fish oil, compared with the control group. The current study demonstrates that fish oil supplementation reduces selected markers of oxidative stress after a single bout of eccentric exercise.

Restricted access

Adamasco Cupisti, Claudia D’Alessandro, Silvia Castrogiovanni, Alice Barale and Ester Morelli

This study aims to investigate dietary composition and nutrition knowledge of 60 athlete and 59 non-athlete adolescent females (age, 14-18 years), using a 3-day food recall and a questionnaire on nutrition. The reported daily energy intake was similar in athletes and non-athletes, but less than the recommended and the estimated requirements. In the athletes, the energy supply from breakfast was higher than in the non-athletes (18.5 ± 6.6 vs. 15.0 ± 8.2%, p < .005). Energy intake from carbohydrates was higher (53.6 ± 6.2 vs. 49.8 ± 63%, p < .05) and that from lipids was lower (30.4 ± 5.5 vs. 34.2 ± 5.2%, p < .001) in athletes than in non-athletes. Athletes also showed higher fiber (20.0 ± 5.8 vs. 14.1 ± 4.3 g/day, p < .001). iron (10.6±5.1 vs. 7.5 ± 2.1 mg/day,/7 < .001) and vitamin A (804 ± 500 vs, 612 ± 456 μg/day, p < .05) reported intake than non-athletes. Calcium, iron, and zinc intake were less than 100% RDA in both groups. Athletes gave a slightly higher rate of correct answers on the nutrition knowledge questionnaire (77.6 vs. 71.6%,p < .01) than non-athletes. In conclusion, the overall recalled dietary intake and nutrition knowledge of the studied adolescent females show some misconceptions and nutrient deficiencies, but the results in athletes are quite better man in non-athletes, suggesting a favorable role of sport practice on dietary habits and nutrition knowledge.

Restricted access

John C. Quindry, Steven R. McAnulty, Matthew B. Hudson, Peter Hosick, Charles Dumke, Lisa S. McAnulty, Dru Henson, Jason D. Morrow and David Nieman

Previous research indicates that ultramarathon exercise can result in blood oxidative stress. The purpose of this investigation was to examine the efficacy of oral supplementation with quercetin, a naturally occurring compound with known antioxidant properties, as a potential countermeasure against blood oxidative stress during an ultramarathon competition. In double-blind fashion, 63 participants received either oral quercetin (250 mg, 4×/day; 1,000 mg/day total) or quercetin-free supplements 3 weeks before and during the 160-km Western States Endurance Run. Blood drawn before and immediately after (quercetin finishers n = 18, quercetin-free finishers n = 21) the event was analyzed for changes in blood redox status and oxidative damage. Results show that quercetin supplementation did not affect race performance. In response to the ultramarathon challenge, aqueous-phase antioxidant capacity (ferric-reducing ability of plasma) was similarly elevated in athletes in both quercetin and quercetin-free treatments and likely reflects significant increases in plasma urate levels. Alternatively, trolox-equivalent antioxidant capacity was not altered by exercise or quercetin. Accordingly, neither F2-isoprostances nor protein carbonyls were influenced by either exercise or quercetin supplementation. In the absence of postrace blood oxidative damage, these findings suggest that oral quercetin supplementation does not alter blood plasma lipid or aqueous-phase antioxidant capacity or oxidative damage during an ultramarathon challenge.

Restricted access

Allan H. Goldfarb, Stephen W. Patrick, Scott Bryer and Tongjian You

Vitamin C supplementation (VC) (either 500 or 1000 mg/d for 2 wk) was compared to a placebo treatment (P) to ascertain if VC could influence oxidative stress. Twelve healthy males (25 ± 1.4 y) were randomly assigned in a counter-balanced design with a 2-wk period between treatments. Data were analyzed using repeated measures ANOVA. Exercise intensity measures (VO2, RER, RPE, HR, lactate) were similar across treatments. Resting blood oxidative-stress markers were unaffected by treatment. Exercise decreased total blood glutathione (TGSH) and reduced glutathione (GSH) and increased oxidized glutathione (GSSG) (P < 0.01) independent of treatment. Protein carbonyls (PC) increased 3.8 fold in the P (P < 0.01). VC attenuated the PC exercise response in a dose-dependent manner (P < 0.01). Thiobarbituric acid reactive substances (TBARS) was not influenced by exercise (P = 0.68) or VC. These data suggest that VC supplementation can attenuate exercise-induced protein oxidation in a dose-dependent manner with no effect on lipid peroxidation and glutathione status.

Restricted access

Marco Malaguti, Marta Baldini, Cristina Angeloni, Pierluigi Biagi and Silvana Hrelia

The authors evaluated the role of a high-protein, low-calorie, polyunsaturated fatty-acid (PUFA) -supplemented diet on anthropometric parameters, erythrocytemembrane fatty-acid composition, and plasma antioxidant defenses of nonprofessional volleyball athletes. The athletes were divided in two groups: One (n = 5) followed the Mediterranean diet, and the other (n = 6) followed a high-protein, low-calorie diet with a 3-g/day fish-oil supplementation. All the athletes had anthropometric measurements taken, both at the beginning and at the end of the study, which lasted for 2 months. Body-mass index and total body fat were significantly diminished in the second group, while they remained unchanged in the first. Plasma total antioxidant activity (TAA) was significantly increased in the plasma of both groups, with no differences between the groups, suggesting that physical activity, not the different diets, is the main contributor to the increase of plasma TAA. The second group showed a significant increase in erythrocytemembrane PUFA content and in the unsaturation index value (UI) because of the fish-oil supplementation. A high-protein, low-carbohydrate, fish-oil-supplemented diet seems to be useful only when the aim of the diet is to obtain weight loss in a short-term period. The significant increase in the UI of erythrocyte membranes indicates the potential for harm, because a high intake of PUFA might increase susceptibility to lipid peroxidation not counterbalanced by a higher increase in TAA. Adherence to the Mediterranean diet seems to be the better choice.