Search Results

You are looking at 71 - 80 of 2,281 items for :

Clear All
Restricted access

Paola Rodriguez-Giustiniani and Stuart D.R. Galloway

omission could be important, as the balance between the effects of estrogens and those of progesterone at the midluteal or late luteal versus the midfollicular phase does not maximize the potential impact upon fluid balance/rehydration. Fluid retention is thought to occur near ovulation during the peak

Restricted access

Paul M. Vanderburgh

Previously there existed no efficacious maximal effort, VO2peak prediction test for subjects who, because of injury, can exercise at high intensity only on a device such as a cycle ergometer. This study's purpose was to develop and validate such a test, a 12-Minute Stationary Cycle Ergometer Test (12MSCET), for college-age physically active men and women. For 60 college-age men and women, and a gender-based resistance setting, the total work done on the 12MSCET and body weight were found to be highly predictive of VO2peak, measured via open circuit spirometry. Furthermore, the torques required for such a test are, for this sample, approximately 50% of those required in other predictive protocols. To date, the 12MSCET has been used for VO2peak assessment of over 300 military cadets who, because of injury, found cycling their only efficacious high-intensity aerobic modality.

Restricted access

Tomoyuki Matsuo, Glenn S. Fleisig, Naiquan Zheng and James R. Andrews

Elbow varus torque is a primary factor in the risk of elbow injury during pitching. To examine the effects of shoulder abduction and lateral trunk tilt angles on elbow varus torque, we conducted simulation and regression analyses on 33 college baseball pitchers. Motion data were used for computer simulations in which two angles— shoulder abduction and lateral trunk tilt—were systematically altered. Forty-two simulated motions were generated for each pitcher, and the peak elbow varus torque for each simulated motion was calculated. A two-way analysis of variance was performed to analyze the effects of shoulder abduction and trunk tilt on elbow varus torque. Regression analyses of a simple regression model, second-order regression model, and multiple regression model were also performed. Although regression analyses did not show any significant relationship, computer simulation indicated that the peak elbow varus torque was affected by both angles, and the interaction of those angles was also significant. As trunk tilt to the contralateral side increased, the shoulder abduction angle producing the minimum peak elbow varus torque decreased. It is suggested that shoulder abduction and lateral trunk tilt may be only two of several determinants of peak elbow varus torque.

Restricted access

Kenneth H. Pitetti, Bo Fernhall and Steve Figoni

Two regression equations were developed to predict cardiovascular fitness (CVF) based on the 20-m shuttle run test (20-MST) for nondisabled youth and for youth with mild mental retardation (MR). The purpose of this study was to compare the validity of both regression formulas to predict CVF in nondisabled, healthy youths (ages 8 to 15 yrs; 38 females and 13 males). Participants performed two modified Bruce protocol treadmill (TM) tests and two 20-MSTs on separate days. CVF (V̇O2peak, ml • kg−1 • min−1) was measured during the TM tests and computed for the 20-MST using both regression equations. Results indicate that test-retest correlations for the 20-MST (# of laps; r = 0.89) and TM test (V̇O2peak, ml • kg−1 • min−1; r = 0.86) were high. Predicted V̇O2peak values were moderately significant (nondisabled youth: r = 0.55, p < .01; youth with MR: r = 0.66, p < .01) when compared with TM V̇O2peak. Correlation between the two regression equations was significant (r = 0.78, p < .01).

Restricted access

Vassilis Tsiaras, Andreas Zafeiridis, Konstantina Dipla, Kostas Patras, Anastasios Georgoulis and Spiros Kellis

The aims were to develop and validate a VO2peak prediction equation from a treadmill running test in active male adolescents. Eighty-eight athletes (12–18 yrs.) performed a maximal exercise test on a treadmill to assess the actual VO2peak and a 20m Shuttle-Run-Test (20mST). A step-wise linear regression analysis was used and the following equation for estimation of VO2peak (mL·kg−1·min−1) = 35.477 + 1.832 × duration in min - 0.010 × duration × body mass in kg was developed. The cross-validation statistics were: R = .54, CE = 0.1 mL·kg−1·min−1, SEE = 2.5 mL·kg−1·min−1 (4.6%), and TE = 2.6 mL·kg−1·min−1 (4.9%). The cross-validation values (CE, SEE, and TE) were lower compared with those of previously published equations in adolescents that estimated VO2peak using anthropometric data, performance in 20mST, and energy cost at submaximal speeds.

Restricted access

John P. Miller, Kerriann Catlaw and Robert Confessore

The purpose of this study was to examine the effect of ankle position on the electromyographic (EMG) activity, peak torque, and peak knee flexion to extension torque ratio during isokinetic testing of the knee. Twelve healthy female athletes performed six maximal knee extension and flexion repetitions with their dominant legs at 60 and 180°/s with the ankle in a plantar flexed position and again in a dorsiflexed position. Root mean square EMG (rmsEMG) activity was determined by placing bipolar surface electrodes on the quadriceps and the hamstrings. Ankle position had no effect on the rmsEMG activity of the quadriceps or the hamstrings at either 60 or 180°/s. Significant differences were noted for peak flexor torque at 607s (p < .001) and 180°/s (p <.01) and for peak torque flexor/extensor ratio (p < .01), with higher values observed with ankle dorsiflexion. This suggests that ankle position affects knee flexor torque and flexor/extensor ratio but not hamstring activity during isokinetic testing of the knee.

Restricted access

Nathan J. de Vos, Nalin A. Singh, Dale A. Ross, Theodora M. Stavrinos, Rhonda Orr and Maria A. Fiatarone Singh

Objective:

To determine the effect of training intensity on the contributions of force and velocity to improvements in peak power (PP) after explosive resistance training in older adults.

Methods:

112 healthy older adults (69 ± 6 yr) were randomized to explosive resistance training at 20% (G20), 50% (G50), or 80% (G80) maximal strength (1-repetition maximum) for 8–12 wk (twice weekly, 5 exercises, 3 sets of 8 explosive concentric/slow eccentric repetitions) using pneumatic resistance machines or a nontraining control group (CON).

Results:

Force at peak power (FPP) increased significantly and similarly among training groups compared with CON. Velocity at peak power (VPP) did not improve significantly and remained similar between all groups. Force contributed significantly more to PP production in G80 and G50 than in CON. The change in PP was independently predicted by changes in fat-free mass in G80 and by changes in both FPP and VPP in G50 and G20.

Conclusion:

Explosive resistance training in older adults results in the ability to produce higher PP outputs with heavier loads without loss of movement velocity. Moderate- to high-intensity training induced a greater relative contribution of force to PP production in this cohort.

Restricted access

Aleksandar Sovtic, Predrag Minic, Jovan Kosutic, Gordana Markovic-Sovtic and Milan Gajic

The modified Chrispin-Norman radiography score (CNS) is used in evaluation of radiographic changes in children with cystic fibrosis (CF). We evaluated the correlation of modified CNS with peak exercise capacity (Wpeak) and ventilatory efficiency (reflected by breathing reserve index—BRI) during progressive cardiopulmonary exercise testing (CPET). Thirty-six children aged 8–17 years were stratified according to their CNS into 3 groups: mild (<10), moderate (10–15), and severe (>15). CPET was performed on a cycle ergometer. Lung function tests included spirometry and whole-body plethysmography. Patients with higher CNS had lower FEV1 (p < .001), Wpeak predicted (%; p = .01) and lower mean peak oxygen consumption (VO2peak/kg; p = .014). The BRI at the anaerobic threshold and at Wpeak was elevated in patients with the highest CNS values (p < .001). The modified CNS correlates moderately with Wpeak (R = −0.443; p = .007) and BRI (R = −0.419; p = .011). Stepwise multiple linear regression showed that RV/TLC was the best predictor of Wpeak/pred (%; B = −0.165; b = −0.494; R2 = .244; p = .002). Children with CF who have high modified CNS exhibit decreased exercise tolerance and ventilatory inefficacy during progressive effort.

Restricted access

Marta D. Van Loan, Barbara Sutherland, Nicola M. Lowe, Judith R. Turnlund and Janet C. King

In this study we tested the effect of zinc (Zn) on muscle function in humans. After receiving 12 mg Zn/day for 17 days. 8 male subjects received 0.3 mg Zn/day tor either 33 or 41 days. Subjects were divided into two groups for repletion. Group A subjects received overnight infusions of 66 mg Zn on Days 1 and 10 and then were fed 12 mg Zn/day for another 16 days. Group B subjects were fed 12 mg Zn/day for 3 weeks. Peak force and total work capacity of the knee and shoulder extensor and flexor muscle groups were assessed using an isokinetic dynamometer at baseline, at two points during depletion, and at repletion. Plasma Zn declined significantly during depletion and remained below baseline levels after repletion. The peak force of the muscle groups tesied was not affected by acute Zn depletion: however, total work capacity for the knee extensor muscles and shoulder extensor and flexor muscles declined significantly. The data suggest that acute Zn depletion alters the total work capacity of skeletal muscle.

Restricted access

Brent L. Arnold and Dawid H. Perrin

Twelve university females were studied to determine the reliability of four different methods of calculating concentric and eccentric peak torque (PT) and angle-specific torques (ASTs) for knee extension. Each subject was tested on the Kin-Corn isokinetic dynamometer on two separate occasions, performing five concentric and eccentric contractions at 60° • s−1. PT and AST at 30°, 60°, and 75° were calculated by averaging the first three contractions, averaging all five contractions, taking the single best value of the first three contractions, and taking the single best value of all five contractions. Intraclass correlation coefficients derived from these calculations showed high correlation among the four methods. Additionally, z tests performed on correlation coefficients transformed to Fisher's Z revealed no differences between pairs of correlation coefficients. These data appear to show there is no difference among the four methods of calculating PT and AST.