Search Results

You are looking at 71 - 80 of 451 items for :

  • "physiological responses" x
Clear All
Restricted access

Lars Donath, Lukas Zahner, Mareike Cordes, Henner Hanssen, Arno Schmidt-Trucksäss and Oliver Faude

The study investigated physiological responses during 2-km walking at a certain intensity of a previously performed maximal exercise test where moderate perceived exertion was reported. Twenty seniors were examined by an incremental walking treadmill test to obtain maximal oxygen uptake (VO2max). A submaximal 2-km walking test was applied 1 wk later. The corresponding moderate perceived exertion (4 on the CR-10 scale) during the VO2max test was applied to the 2-km treadmill test. Moderate exertion (mean rating of perceived exertion [RPE]: 4 ± 1) led to 76% ± 8% of VO2max and 79% ± 6% of maximal heart rate. RPE values drifted with a significant time effect (p = .001, ηp = .58) during the 2-km test from 3 ± 0.7 to 4.6 ± 0.8. Total energy expenditure (EE) was 3.3 ± 0.5 kcal/kg. No gender differences in ventilatory, heart-rate, or EE data occurred. Brisk walking at moderate RPE of 3–5 would lead to a beneficial physiological response during endurance training and a weekly EE of nearly 1,200 kcal when exercising 5 times/wk for 30 min.

Restricted access

Gerhard Tschakert and Peter Hofmann

High-intensity intermittent exercise (HIIE) has been applied in competitive sports for more than 100 years. In the last decades, interval studies revealed a multitude of beneficial effects in various subjects despite a large variety of exercise prescriptions. Therefore, one could assume that an accurate prescription of HIIE is not relevant. However, the manipulation of HIIE variables (peak workload and peak-workload duration, mean workload, intensity and duration of recovery, number of intervals) directly affects the acute physiological responses during exercise leading to specific medium- and long-term training adaptations. The diversity of intermittent-exercise regimens applied in different studies may suggest that the acute physiological mechanisms during HIIE forced by particular exercise prescriptions are not clear in detail or not taken into consideration. A standardized and consistent approach to the prescription and classification of HIIE is still missing. An optimal and individual setting of the HIIE variables requires the consideration of the physiological responses elicited by the HIIE regimen. In this regard, particularly the intensities and durations of the peak-workload phases are highly relevant since these variables are primarily responsible for the metabolic processes during HIIE in the working muscle (eg, lactate metabolism). In addition, the way of prescribing exercise intensity also markedly influences acute metabolic and cardiorespiratory responses. Turn-point or threshold models are suggested to be more appropriate and accurate to prescribe HIIE intensity than using percentages of maximal heart rate or maximal oxygen uptake.

Restricted access

Paul G. Montgomery, David B. Pyne and Clare L. Minahan

Purpose:

To characterize the physical and physiological responses during different basketball practice drills and games.

Methods:

Male basketball players (n = 11; 19.1 ± 2.1 y, 1.91 ± 0.09 m, 87.9 ± 15.1 kg; mean ± SD) completed offensive and defensive practice drills, half court 5on5 scrimmage play, and competitive games. Heart rate, VO2 and triaxial accelerometer data (physical demand) were normalized for individual participation time. Data were log-transformed and differences between drills and games standardized for interpretation of magnitudes and reported with the effect size (ES) statistic.

Results:

There was no substantial difference in the physical or physiological variables between offensive and defensive drills; physical load (9.5%; 90% confidence limits ±45); mean heart rate (-2.4%; ±4.2); peak heart rate (-0.9%; ±3.4); and VO2 (–5.7%; ±9.1). Physical load was moderately greater in game play compared with a 5on5 scrimmage (85.2%; ±40.5); with a higher mean heart rate (12.4%; ±5.4). The oxygen demand for live play was substantially larger than 5on5 (30.6%; ±15.6).

Conclusions:

Defensive and offensive drills during basketball practice have similar physiological responses and physical demand. Live play is substantially more demanding than a 5on5 scrimmage in both physical and physiological attributes. Accelerometers and predicted oxygen cost from heart rate monitoring systems are useful for differentiating the practice and competition demands of basketball.

Restricted access

John G. Seifert, Greg L. Paul, Dennis E. Eddy and Robert Murray

The effects of preexercise hyperinsulinemia on exercising plasma glucose, plasma insulin, and metabolic responses were assessed during 50 min cycling at 62% VO2max. Subjects were fed a 6% sucrose/glucose solution (LCHO) or a 20% maltodextrin/glucose solution (HCHO) to induce changes in plasma insulin. During exercise, subjects assessed perceived nauseousness and lightheadedness. By the start of exercise, plasma glucose and plasma insulin had increased. In the LCHO trial, plasma glucose values significantly decreased below the baseline value at 30 min of exercise. However, by 40 min, exercise plasma glucose and insulin values were similar to the baseline value. Exercise plasma glucose and insulin did not differ from baseline values in the HCHO trial. Ingestion of LCHO or HCHO was not associated with nausea or lightheadedness. It was concluded that the hyperinsulinemia induced by preexercise feediigs of CHO did not result in frank hypoglycemia or adversely affect sensory or physiological responses during 50 min of moderate-intensity cycling.

Restricted access

Jerry Mayo, Brian Lyons, Kendal Honea, John Alvarez and Richard Byrum

Context:

Rehabilitation specialists should understand cardiovascular responses to different movement patterns.

Objective:

To investigate physiological responses to forward- (FM), backward- (BM), and lateral-motion (LM) exercise at self-selected intensities.

Design:

Within-subjects design to test independent variable, movement pattern; repeated-measures ANOVA to analyze oxygen consumption (VO2), heart rate (HR), respiratory-exchange ratio (RER), and ratings of perceived exertion (RPE).

Participants:

10 healthy women.

Results:

VO2 and HR were significantly higher during LM than during FM and BM exercise. The respective VO2 (ml · kg · min–1) and HR (beats/min) values for each condition were FM 25.19 ± 3.6, 142 ± 11; BM 24.24 ± 2.7, 145 ± 12; and LM 30.5 ± 4.6, 160 ± 13. No differences were observed for RER or RPE.

Conclusions:

At self-selected intensities all 3 modes met criteria for maintaining cardiovascular fitness. Practitioners can use these results to develop rehabilitation programs based on clients’ perception and level of discomfort

Restricted access

William M. Bertucci, Andrew C. Betik, Sebastien Duc and Frederic Grappe

This study was designed to examine the biomechanical and physiological responses between cycling on the Axiom stationary ergometer (Axiom, Elite, Fontaniva, Italy) vs. field conditions for both uphill and level ground cycling. Nine cyclists performed cycling bouts in the laboratory on an Axiom stationary ergometer and on their personal road bikes in actual road cycling conditions in the field with three pedaling cadences during uphill and level cycling. Gross efficiency and cycling economy were lower (–10%) for the Axiom stationary ergometer compared with the field. The preferred pedaling cadence was higher for the Axiom stationary ergometer conditions compared with the field conditions only for uphill cycling. Our data suggests that simulated cycling using the Axiom stationary ergometer differs from actual cycling in the field. These results should be taken into account notably for improving the precision of the model of cycling performance, and when it is necessary to compare two cycling test conditions (field/laboratory, using different ergometers).

Restricted access

Roy J. Shephard

Autonomic dysreflexia is a common response to painful stimuli following high level spinal injuries. Loss of normal control of sympathetic reflexes leads to large increases in blood pressure, accompanied by headache and occasional more dangerous sequelae. Although now officially banned, intentional dysreflexia ("boosting") is still exploited by some competitors to gain an unfair advantage. It is thus important to consider physiological mechanisms, consequences for health and performance, and methods of controlling this abuse. Boosters perceive the practice as frequent, performance enhancing, and of low immediate risk. Effective methods of eliminating the practice may include more stringent control of competitors, evaluating and publicizing short-and long-term risks, and countering arguments that boosting is an ethically acceptable method of restoring a normal physiological response.

Restricted access

Owen Spendiff and Ian G. Campbell

Eight men with spinal cord injury ingested glucose (CHO) or placebo (PLA) 20-min prior to exercise. Participants performed arm crank ergometry for one-hour at 65% V̇O2peak, followed by a 20-min performance test in which athletes were asked to achieve their greatest possible distance. Physiological responses during the one-hour tests were similar between CHO and PLA trials. At the onset of exercise, the CHO trial blood glucose concentrations were higher than PLA (p < .05) but returned to resting values after 20-min exercise. Respiratory exchange ratio responses during the CHO trial were indicative of a higher rate of CHO oxidation (p < .05). A greater distance (km) was covered in the 20-min performance tests after CHO ingestion (p < .05). Results show preingestion of glucose improves endurance performance of wheelchair athletes.

Restricted access

Kamuran Yerlikaya Balyan, Serdar Tok, Arkun Tatar, Erdal Binboga and Melih Balyan

The present study examined the association between personality, competitive anxiety, somatic anxiety and physiological arousal in athletes with high and low anxiety levels. Anxiety was manipulated by means of an incentive. Fifty male participants, first, completed the Five Factor Personality Inventory and their resting electro dermal activity (EDA) was recorded. In the second stage, participants were randomly assigned to high or low anxiety groups. Individual EDAs were recorded again to determine precompetition physiological arousal. Participants also completed the Competitive State Anxiety Inventory-2 (CSAI-2) and played a computer-simulated soccer match. Results showed that neuroticism was related to both CSAI-2 components and physiological arousal only in the group receiving the incentive. Winners had higher levels of cognitive anxiety and lower levels of physiological arousal than losers. On the basis of these findings, we concluded that an athlete’s neurotic personality may influence his cognitive and physiological responses in a competition.

Restricted access

Peter J. Lang

Emotions are organized around 2 basic motivational systems, appetitive and defensive, that evolved from primitive neural circuits in the mammalian brain. The appetitive system is keyed for approach behavior, founded on the preservative, sexual, and nurturant reflexes that underlie pleasant affects; the defense system is keyed for withdrawal, founded on protective and escape reflexes that underlie unpleasant affects. Both systems control attentional processing: Distal engagement by motive-relevant cues prompts immobility and orienting. With greater cue proximity (e.g., predator or prey imminence), neural motor centers supercede, determining overt defensive or consummatory action. In humans, these systems determine affective expression, evaluation behavior, and physiological responses that can be related to specific functional changes in the brain. This theoretical approach is illustrated with psychophysiological and brain imagery studies in which human subjects respond to emotional picture stimuli.