Search Results

You are looking at 71 - 80 of 3,004 items for :

Clear All
Restricted access

Jeffrey M. McBride, Tyler J. Kirby, Tracie L. Haines and Jared Skinner

Purpose:

The purpose of the current investigation was to determine the relationship between relative net vertical impulse (net vertical impulse (VI)) and jump height in the jump squat (JS) going to different squat depths and utilizing various loads.

Methods:

Ten males with two years of jumping experience participated in this investigation (Age: 21.8 ± 1.9 y; Height: 176.9 ± 5.2 cm; Body Mass: 79.0 ± 7.1 kg, 1RM: 131.8 ± 29.5 kg, 1RM/BM: 1.66 ± 0.27). Subjects performed a series of static jumps (SJS) and countermovement jumps (CMJJS) with various loads (Body Mass, 20% of 1RM, 40% of 1RM) in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth. During the concentric phase of each JS, peak force (PF), peak power (PP), jump height (JH) and relative VI were recorded and analyzed.

Results:

Increasing squat depth corresponded to a decrease in PF and an increase in JH, relative VI for both SJS and CMJJS during all loads. Across all squat depths and loading conditions relative VI was statistically significantly correlated to JH in the SJS (r = .8956, P < .0001, power = 1.000) and CMJJS (r = .6007, P < .0001, power = 1.000). Across all squat depths and loading conditions PF was statistically nonsignificantly correlated to JH in the SJS (r = –0.1010, P = .2095, power = 0.2401) and CMJJS (r = –0.0594, P = .4527, power = 0.1131). Across all squat depths and loading conditions peak power (PP) was significantly correlated with JH during both the SJS (r = .6605, P < .0001, power = 1.000) and the CMJJS (r = .6631, P < .0001, power = 1.000). PP was statistically significantly higher at BM in comparison with 20% of 1RM and 40% of 1RM in the SJS and CMJJS across all squat depths.

Conclusions:

Results indicate that relative VI and PP can be used to predict JS performance, regardless of squat depth and loading condition. However, relative VI may be the best predictor of JS performance with PF being the worst predictor of JS performance.

Restricted access

Ryland Morgans, Rocco Di Michele and Barry Drust

indicative of the supercompensation that follows an exercise stimulus. 6 The quantification of jump performance at relevant times after matches may therefore provide a way to evidence the potential for match play to act as a training stimulus for muscle power in soccer players. Methods Fifteen male

Restricted access

Jonathan. P. Little, Scott C. Forbes, Darren G. Candow, Stephen M. Cornish and Philip D. Chilibeck

Creatine (Cr) supplementation increases muscle mass, strength, and power. Arginine α-ketoglutarate (A-AKG) is a precursor for nitric oxide production and has the potential to improve blood flow and nutrient delivery (i.e., Cr) to muscles. This study compared a commercial dietary supplement of Cr, A-AKG, glutamine, taurine, branchedchain amino acids, and medium-chain triglycerides with Cr alone or placebo on exercise performance and body composition. Thirty-five men (~23 yr) were randomized to Cr + A-AKG (0.1 g · kg−1 · d−1 Cr + 0.075 g · kg−1 · d−1 A-AKG, n = 12), Cr (0.1 g · kg−1 · d−1, n = 11), or placebo (1 g · kg−1 · d−1 sucrose, n = 12) for 10 d. Body composition, muscle endurance (bench press), and peak and average power (Wingate tests) were measured before and after supplementation. Bench-press repetitions over 3 sets increased with Cr + A-AKG (30.9 ==6.6 → 34.9 ± 8.7 reps; p < .01) and Cr (27.6 ± 5.9 → 31.0 ± 7.6 reps; p < .01), with no change for placebo (26.8 ± 5.0 → 27.1 ± 6.3 reps). Peak power significantly increased in Cr + A-AKG (741 ± 112 → 794 ± 92 W; p < .01), with no changes in Cr (722 ± 138 → 730 ± 144 W) and placebo (696 ± 63 → 705 ± 77 W). There were no differences in average power between groups over time. Only the Cr-only group increased total body mass (79.9 ± 13.0→81.1 ± 13.8 kg; p < .01), with no significant changes in lean-tissue or fat mass. These results suggest that Cr alone and in combination with A-AKG improves upper body muscle endurance, and Cr + A-AKG supplementation improves peak power output on repeated Wingate tests.

Restricted access

Tyler J. Kirby, Jeffrey M. McBride, Tracie L. Haines and Andrea M. Dayne

The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = –0.3947, p = .0018, power = 0.8831) and countermovement jump (r = –0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.

Restricted access

Anni Vanhatalo, Andrew M. Jones and Mark Burnley

The critical power (CP) is mathematically defined as the power-asymptote of the hyperbolic relationship between power output and time-to-exhaustion. Physiologically, the CP represents the boundary between the steady-state and nonsteady state exercise intensity domains and therefore may provide a more meaningful index of performance than other well-known landmarks of aerobic fitness such as the lactate threshold and the maximal O2 uptake. Despite the potential importance to sports performance, the CP is often misinterpreted as a purely mathematical construct which lacks physiological meaning and only in recent years has this concept begun to emerge as valid and useful technique for monitoring endurance fitness. This commentary defines the basic principles of the CP concept, outlines its importance to high-intensity exercise performance, and provides an overview of the current methods available for its assessment. Interventions including training, pacing and prior exercise can be used to alter the parameters of the power-time relationship. A future challenge lies in optimizing such interventions in order to positively affect the parameters of the power-time relationship and thereby enhance sports performance in specific events.

Restricted access

Todd C. Pataky, Greg P. Slota, Mark L. Latash and Vladimir M. Zatsiorsky

During power grasp, the number of local force maxima reflects either the central nervous system’s preferential use of particular hand regions, or anatomical constraints, or both. Previously, both bimodal and trimodal force maxima have been hypothesized for power grasp of a cylindrical handle. Here we measure the number of local force maxima, with a resolution of 4.8°, when performing pushing and pulling efforts in the plane perpendicular to the cylinder’s long axis. Twelve participants produced external forces to eight targets. The number of contacts was defined as the number of local maxima exceeding background variance. A minimum of four and a maximum of five discrete contacts were observed in all subjects at the distal phalanges and metacarpal heads. We thus reject previous hypotheses of bimodal or trimodal force control for cylindrical power grasping. Since we presently observed only 4–5 contacts, which is rather low considering the hand’s kinematic flexibility in the flexion plane, we also reject hypotheses of continuous contact, which are inherent to current grasping taxonomy. A modification to current grasping taxonomy is proposed wherein power grasp contains separate branches for continuous and discrete contacts, and where power and precision grasps are distinguished only by grasp manipulability.

Full access

Laura K. Fewell, Riley Nickols, Amanda Schlitzer Tierney and Cheri A. Levinson

heart beats per minute. The CSCS then used the following equations to calculate patients’ VO 2 max scores: VO 2 max = 111.33 − (0.42 × HR) for males; VO 2 max = 65.81 − (0.1847 × HR) for females. Vertical jump was utilized to assess patients’ power output and was measured at the treatment center using

Restricted access

Karin Roeleveld, Eric Lute, Dirkjan Veeger, Luc van der Woude and Tom Gwinn

To assess power output, force application, and kinematics of wheelchair propulsion in peak exercise, nine wheelchair athletes with medical lesion levels of T8 or lower performed a 30-s sprint test on a stationary wheelchair ergometer. Mean power output, calculated for the right wheel only, was 59.4 ± 8.5 W. The ratio between effective force and total propulsive force was 60 ± 6%. A negative torque around the hand and a not tangentially directed total force accounted for this low effectiveness. Since the subject group was highly trained, their technique was considered to be optimal for the given circumstances. Therefore, athletes who want to improve power output by increasing effectiveness should keep in mind the existence of a nontangential propulsive force and a braking torque applied by the hands onto the hand rim surface. It is likely that both aspects will be influenced by the geometry of the wheelchair, for example, hand rim dimension or seat position.

Restricted access

Terry J. Housh, Glen O. Johnson and Dona J. Housh

The purpose of this investigation was to examine age related changes in muscular power of high school wrestlers. A total of 155 high school wrestlers (M age±SD = 16.5±2.4 yrs) volunteered as subjects for this investigation. The sample included only wrestlers who were ≤ 16.00 years (younger group, n=75) or >17.00 years (older group, n=80). All subjects completed a Wingate anaerobic test to determine mean (MP) and peak (PP) power as well as underwater weighing for body composition assessment. The results indicated significant (p<0.05) group differences for absolute MP and PP but no differences when adjusted for BW and FFW. Thus the enhanced muscular power in the older group of high school wrestlers was associated with increases in BW and FFW.

Restricted access

Gabriel Rodríguez-Romo, Thomas Yvert, Alfonso de Diego, Catalina Santiago, Alfonso L. Díaz de Durana, Vicente Carratalá, Nuria Garatachea and Alejandro Lucia

The authors compared ACTN3 R577X genotype and allele frequencies in the majority of all-time-best Spanish judo male athletes (n = 108) and 343 ethnically matched nonathletic men. No between-groups differences were found in allele (P = .077) or genotype distributions (P = .178). Thus, the R577X polymorphism was not significantly associated with the status of being an elite judo athlete, at least in the Spanish population. The contribution of genetics to sports-related phenotype traits is undeniable with some genotypes, of which ACTN3 R577X is currently the leading candidate, partly distinguishing individuals predisposed to either endurance or power sports. However, few athletic events can be categorized as purely power or endurance based. Although genetic testing (ie, for ACTN3 R577X) is already being marketed to predict sports talent and potential of young children, its usefulness is still questionable, at least in competitive judo.