Search Results

You are looking at 81 - 90 of 290 items for :

Clear All
Restricted access

Matthias W. Hoppe, Christian Baumgart and Jürgen Freiwald

Purpose:

To investigate differences in running activities between adolescent and adult tennis players during match play. Differences between winning and losing players within each age group were also examined.

Methods:

Forty well-trained male players (20 adolescents, 13 ± 1 y; 20 adults, 25 ± 4 y) played a simulated singles match against an opponent of similar age and ability. Running activities were assessed using portable devices that sampled global positioning system (10 Hz) and inertial-sensor (accelerometer, gyroscope, and magnetometer; 100 Hz) data. Recorded data were examined in terms of velocity, acceleration, deceleration, metabolic power, PlayerLoad, and number of accelerations toward the net and the forehand and backhand corners.

Results:

Adult players spent more time at high velocity (≥4 m/s2), acceleration (≥4 m/s2), deceleration (≤–4 m/s2), and metabolic power (≥20 W/kg) (P ≤ .009, ES = 0.9–1.5) and performed more accelerations (≥2 m/s2) toward the backhand corner (P < .001, ES = 2.6–2.7). No differences between adolescent winning and losing players were evident overall (P ≥ .198, ES = 0.0–0.6). Adult winning players performed more accelerations (2 to <4 m/s2) toward the forehand corner (P = .026, ES = 1.2), whereas adult losing players completed more accelerations (≥2 m/s2) toward the backhand corner (P ≤ .042, ES = 0.9).

Conclusions:

This study shows that differences in running activities between adolescent and adult tennis players exist in high-intensity measures during simulated match play. Furthermore, differences between adolescent and adult players, and also between adult winning and losing players, are present in terms of movement directions. Our findings may be helpful for coaches to design different training drills for both age groups of players.

Restricted access

Ryu Nagahara, Jean-Benoit Morin and Masaaki Koido

Purpose:

To assess soccer-specific impairment of mechanical properties in accelerated sprinting and its relation with activity profiles during an actual match.

Methods:

Thirteen male field players completed 4 sprint measurements, wherein running speed was obtained using a laser distance-measurement system, before and after the 2 halves of 2 soccer matches. Macroscopic mechanical properties (theoretical maximal horizontal force [F0], maximal horizontal sprinting power [Pmax], and theoretical maximal sprinting velocity [V0]) during the 35-m sprint acceleration were calculated from speed–time data. Players’ activity profiles during the matches were collected using global positioning system units.

Results:

After the match, although F0 and Pmax did not significantly change, V0 was reduced (P = .038), and the magnitude of this reduction correlated with distance (positive) and number (negative) of high-speed running, number of running (negative), and other low-intensity activity distance (negative) during the match. Moreover, Pmax decreased immediately before the second half (P = .014).

Conclusions:

The results suggest that soccer-specific fatigue probably impairs players’ maximal velocity capabilities more than their maximal horizontal force-production abilities at initial acceleration. Furthermore, long-distance running, especially at high speed, during the match may induce relatively large impairment of maximal velocity capabilities. In addition, the capability of producing maximal horizontal power during sprinting is presumably impaired during halftime of a soccer match with passive recovery. These findings could be useful for players and coaches aiming to train effectively to maintain sprinting performance throughout a soccer match when planning a training program.

Restricted access

Daniel Castillo, Matthew Weston, Shaun J. McLaren, Jesús Cámara and Javier Yanci

The aims of this study were to describe the internal and external match loads (ML) of refereeing activity during official soccer matches and to investigate the relationship among the methods of ML quantification across a competitive season. A further aim was to examine the usefulness of differential perceived exertion (dRPE) as a tool for monitoring internal ML in soccer referees. Twenty field referees (FRs) and 43 assistant referees (ARs) participated in the study. Data were collected from 30 competitive matches (FR = 20 observations, AR = 43 observations) and included measures of internal (Edwards’ heart-rate-derived training impulse [TRIMPEDW]) ML, external (total distance covered, distance covered at high speeds, and player load) ML, and ML differentiated ratings of perceived respiratory (sRPEres) and leg-muscle (sRPEmus) exertion. Internal and external ML were all greater for FRs than for ARs (–19.7 to –72.5), with differences ranging from very likely very large to most likely extremely large. The relationships between internal-ML and external-ML indicators were, in most cases, unclear for FR (r < .35) and small to moderate for AR (r < .40). The authors found substantial differences between RPEres and RPEmus scores in both FRs (0.6 AU; ±90% confidence limits 0.4 AU) and ARs (0.4; ±0.3). These data demonstrate the multifaceted demands of soccer refereeing and thereby highlight the importance of monitoring both internal and external ML. Moreover, dRPE represents distinct dimensions of effort and may be useful in monitoring soccer referees’ ML during official matches.

Restricted access

Jamie Highton, Thomas Mullen, Jonathan Norris, Chelsea Oxendale and Craig Twist

This aim of this study was to examine the validity of energy expenditure derived from microtechnology when measured during a repeated-effort rugby protocol. Sixteen male rugby players completed a repeated-effort protocol comprising 3 sets of 6 collisions during which movement activity and energy expenditure (EEGPS) were measured using microtechnology. In addition, energy expenditure was estimated from open-circuit spirometry (EEVO2). While related (r = .63, 90%CI .08–.89), there was a systematic underestimation of energy expenditure during the protocol (–5.94 ± 0.67 kcal/min) for EEGPS (7.2 ± 1.0 kcal/min) compared with EEVO2 (13.2 ± 2.3 kcal/min). High-speed-running distance (r = .50, 95%CI –.66 to .84) was related to EEVO2, while PlayerLoad was not (r = .37, 95%CI –.81 to .68). While metabolic power might provide a different measure of external load than other typically used microtechnology metrics (eg, high-speed running, PlayerLoad), it underestimates energy expenditure during intermittent team sports that involve collisions.

Restricted access

Cloe Cummins and Rhonda Orr

Objective:

To investigate the impact forces of collision events during both attack and defense in elite rugby league match play and to compare the collision profiles between playing positions.

Participants:

26 elite rugby league players.

Methods:

Player collisions were recorded using an integrated accelerometer in global positioning system units (SPI-Pro X, GPSports). Impact forces of collisions in attack (hit-ups) and defense (tackles) were analyzed from 359 files from outside backs (n = 78), adjustables (n = 97), wide-running forwards (n = 136), and hit-up forwards (n = 48) over 1 National Rugby League season.

Results:

Hit-up forwards were involved in 0.8 collisions/min, significantly more than all other positional groups (wide-running forwards P = .050, adjustables P = .042, and outside backs P = .000). Outside backs experienced 25% fewer collisions per minute than hit-up forwards. Hit-up forwards experienced a collision within the 2 highest classifications of force (≥10 g) every 2.5 min of match play compared with 1 every 5 and 9 min for adjustables and outside backs, respectively. Hit-up forwards performed 0.5 tackles per minute of match play, 5 times that of outside backs (ES = 1.90; 95% CI [0.26,3.16]), and 0.2 hit-ups per minute of match play, twice as many as adjustables.

Conclusions:

During a rugby league match, players are exposed to a significant number of collision events. Positional differences exist, with hit-up and wide-running forwards experiencing greater collision events than adjustables and outside backs. Although these results may be unique to the individual team’s defensive- and attacking-play strategies, they are indicative of the significant collision profiles in professional rugby league.

Open access

Marco Cardinale and Matthew C. Varley

The need to quantify aspects of training to improve training prescription has been the holy grail of sport scientists and coaches for many years. Recently, there has been an increase in scientific interest, possibly due to technological advancements and better equipment to quantify training activities. Over the last few years there has been an increase in the number of studies assessing training load in various athletic cohorts with a bias toward subjective reports and/or quantifications of external load. There is an evident lack of extensive longitudinal studies employing objective internal-load measurements, possibly due to the cost-effectiveness and invasiveness of measures necessary to quantify objective internal loads. Advances in technology might help in developing better wearable tools able to ease the difficulties and costs associated with conducting longitudinal observational studies in athletic cohorts and possibly provide better information on the biological implications of specific external-load patterns. Considering the recent technological developments for monitoring training load and the extensive use of various tools for research and applied work, the aim of this work was to review applications, challenges, and opportunities of various wearable technologies.

Restricted access

Dean J. McNamara, Tim J. Gabbett, Paul Chapman, Geraldine Naughton and Patrick Farhart

Purpose:

Bowling workload is linked to injury risk in cricket fast bowlers. This study investigated the validity of microtechnology in the automated detection of bowling counts and events, including run-up distance and velocity, in cricket fast bowlers.

Method:

Twelve highly skilled fast bowlers (mean ± SD age 23.5 ± 3.7 y) performed a series of bowling, throwing, and fielding activities in an outdoor environment during training and competition while wearing a microtechnology unit (MinimaxX). Sensitivity and specificity of a bowling-detection algorithm were determined by comparing the outputs from the device with manually recorded bowling counts. Run-up distance and run-up velocity were measured and compared with microtechnology outputs.

Results:

No significant differences were observed between direct measures of bowling and nonbowling events and true positive and true negative events recorded by the MinimaxX unit (P = .34, r = .99). The bowling-detection algorithm was shown to be sensitive in both training (99.0%) and competition (99.5%). Specificity was 98.1% during training and 74.0% during competition. Run-up distance was accurately recorded by the unit, with a percentage bias of 0.8% (r = .90). The final 10-m (–8.9%, r = .88) and 5-m (–7.3%, r = .90) run-up velocities were less accurate.

Conclusions:

The bowling-detection algorithm from the MinimaxX device is sensitive to detect bowling counts in both cricket training and competition. Although specificity is high during training, the number of false positive events increased during competition. Additional bowling workload measures require further development.

Restricted access

Ademir F.S. Arruda, Christopher Carling, Vinicius Zanetti, Marcelo S. Aoki, Aaron J. Coutts and Alexandre Moreira

Purpose:

To analyze the effects of a very congested match schedule on the total distance (TD) covered, high-intensity-running (HIR) distance, and frequency of accelerations and body-load impacts (BLIs) performed in a team of under-15 soccer players (N = 10; 15.1 ± 0.2 y, 171.8 ± 4.7 cm, 61 ± 6.0 kg) during an international youth competition.

Methods:

Using global positioning systems, player performances were repeatedly monitored in 5 matches performed over 3 successive days.

Results:

Significant differences were observed between matches (P < .05) for the frequency of accelerations per minute, BLIs, and BLIs per minute. No differences were observed for the TD covered, TD run per minute, number of high-intensity runs, distance covered in HIR, per-minute peak running speed attained, or frequency of accelerations. The frequency of accelerations per minute decreased across the competition while BLIs were higher during the final than in all other matches.

Conclusions:

These results suggest that BLIs and acceleration might be used as an alternative means to represent the external load during congested match schedules rather than measures related to running speed or distance covered.

Restricted access

Nicola Marsh, Nick Dobbin, Craig Twist and Chris Curtis

This study assessed energy intake and expenditure of international female touch players during an international tournament. Energy intake (food diary) and expenditure (accelerometer, global positioning system) were recorded for 16 female touch players during a four-day tournament, competing in 8.0 ± 1.0 matches; two on Days 1, 2, and 4, and three on Day 3. Total daily energy expenditure (43.6 ± 3.1 Kcal·kg-1 body mass (BM)) was not different (p > .05) from energy intake (39.9 ± 9.4 Kcal·kg-1 BM). Carbohydrate intakes were below current recommendations (6–10 g·kg-1 BM) on Days 1 (4.4 ± 0.6 g·kg-1 BM) and 3 (4.7 ± 1.0 g·kg-1 BM) and significantly below (p < .05) on Day 2 (4.1 ± 1.0 g·kg-1 BM). Protein and fat intakes were consistent with recommendations (protein, 1.2–2.0 g·kg-1 BM: fat, 20–35% total Kcal) across Days 1–3 (protein, 1.9 ± 0.8, 2.2 ± 0.8, and 2.0 ± 0.7 g·kg-1 BM; fat, 35.6 ± 6.8, 38.5 ± 6.4, and 35.9 ± 5.4% total Kcal). Saturated fat intakes were greater (p < .05) than recommendations (10% total Kcal) on Days 1–3 (12.4 ± 2.9, 14.2 ± 5.1, and 12.7 ± 3.5% total Kcal). On average, female touch players maintained energy balance. Carbohydrate intakes appeared insufficient and might have contributed to the reduction (p < .05) in high-intensity running on Day 3. Further research might investigate the applicability of current nutrition recommendations and the role of carbohydrate in multimatch, multiday tournaments.

Restricted access

Paolo Menaspà, Franco M. Impellizzeri, Eric C. Haakonssen, David T. Martin and Chris R. Abbiss

Purpose:

To determine the consistency of commercially available devices used for measuring elevation gain in outdoor activities and sports.

Methods:

Two separate observational validation studies were conducted. Garmin (Forerunner 310XT, Edge 500, Edge 750, and Edge 800; with and without elevation correction) and SRM (Power Control 7) devices were used to measure total elevation gain (TEG) over a 15.7-km mountain climb performed on 6 separate occasions (6 devices; study 1) and during a 138-km cycling event (164 devices; study 2).

Results:

TEG was significantly different between the Garmin and SRM devices (P < .05). The between-devices variability in TEG was lower when measured with the SRM than with the Garmin devices (study 1: 0.2% and 1.5%, respectively). The use of the Garmin elevation-correction option resulted in a 5–10% increase in the TEG.

Conclusions:

While measurements of TEG were relatively consistent within each brand, the measurements differed between the SRM and Garmin devices by as much as 3%. Caution should be taken when comparing elevation-gain data recorded with different settings or with devices of different brands.