Search Results

You are looking at 81 - 90 of 191 items for :

  • "calorimetry" x
Clear All
Restricted access

Steven Gastinger, Guillaume Nicolas, Anthony Sorel, Hamid Sefati and Jacques Prioux

The aim of this article was to compare 2 portable devices (a heart-rate monitor and an electromagnetic-coil system) that evaluate 2 different physiological parameters—heart rate (HR) and ventilation (VE)—with the objective of estimating energy expenditure (EE). The authors set out to prove that VE is a more pertinent setting than HR to estimate EE during light to moderate activities (sitting and standing at rest and walking at 4, 5, and 6 km/hr). Eleven healthy men were recruited to take part in this study (27.6 ± 5.4 yr, 73.7 ± 9.7 kg). The authors determined the relationships between HR and EE and between VE and EE during light to moderate activities. They compared EE measured by indirect calorimetry (EEREF) with EE estimated by HR monitor (EEHR) and EE estimated by electromagnetic coils (EEMAG) in upright sitting and standing positions and during walking exercises. They compared EEREF with EEHR and EEMAG. The results showed no significant difference between the values of EEREF and EEMAG. However, they showed several significant differences between the values of EEREF and EEHR (for standing at rest and walking at 5 and 6 km/hr). These results showed that the electromagnetic-coil system seems to be more accurate than the HR monitor to estimate EE at rest and during exercise. Taking into consideration these results, it would be interesting to associate the parameters VE and HR to estimate EE. Furthermore, a new version of the electromagnetic-coil device was recently developed and provides the possibility to perform measurement under daily life conditions.

Restricted access

Jean M. Nyakayiru, Kristin L. Jonvik, Philippe J.M. Pinckaers, Joan Senden, Luc J.C. van Loon and Lex B. Verdijk

While the majority of studies reporting ergogenic effects of dietary nitrate have used a multiday supplementation protocol, some studies suggest that a single dose of dietary nitrate before exercise can also improve subsequent performance. We aimed to compare the impact of acute and 6-day sodium nitrate supplementation on oxygen uptake (V̇O2) and time-trial performance in trained cyclists. Using a randomized, double-blind, cross-over design, 17 male cyclists (25 ± 4 y, V̇O2peak 65 ± 4 ml·kg-1·min-1, Wmax 411 ± 35 W) were subjected to 3 different trials; 5 days placebo and 1 day sodium nitrate supplementation (1-DAY); 6 days sodium nitrate supplementation (6-DAY); 6 days placebo supplementation (PLA). Nitrate was administered as 1097 mg sodium nitrate providing 800 mg (~12.9 mmol) nitrate per day. Three hours after ingestion of the last supplemental bolus, indirect calorimetry was performed while subjects performed 30 min of exercise at 45% Wmax and 30 min at 65% Wmax on a cycle ergometer, followed by a 10 km time-trial. Immediately before exercise, plasma [nitrate] and [nitrite] increased to a similar extent during the 6-DAY and 1-DAY trial, but not with PLA (plasma nitrite: 501 ± 205, 553 ± 278, and 239 ± 74 nM, respectively; p < .001). No differences were observed between interventions in V̇O2 during submaximal exercise, or in time to complete the time-trial (6-DAY: 1004 ± 61, 1-DAY: 1022 ± 72, PLA: 1017 ± 71 s; p = .28). We conclude that both acute and 6-days of sodium nitrate supplementation do not alter V̇O2 during submaximal exercise or improve time-trial performance in highly trained cyclists, despite increasing plasma [nitrate] and [nitrite].

Restricted access

Jeanne F. Nichols, Hilary Aralis, Sonia Garcia Merino, Michelle T. Barrack, Lindsay Stalker-Fader and Mitchell J. Rauh

There is a growing need to accurately assess exercise energy expenditure (EEE) in athletic populations that may be at risk for health disorders because of an imbalance between energy intake and energy expenditure. The Actiheart combines heart rate and uniaxial accelerometry to estimate energy expenditure above rest. The authors’ purpose was to determine the utility of the Actiheart for predicting EEE in female adolescent runners (N = 39, age 15.7 ± 1.1 yr). EEE was measured by indirect calorimetry and predicted by the Actiheart during three 8-min stages of treadmill running at individualized velocities corresponding to each runner’s training, including recovery, tempo, and 5-km-race pace. Repeated-measures ANOVA with Bonferroni post hoc comparisons across the 3 running stages indicated that the Actiheart was sensitive to changes in intensity (p < .01), but accelerometer output tended to plateau at race pace. Pairwise comparisons of the mean difference between Actiheart- and criterion-measured EEE yielded values of 0.0436, 0.0539, and 0.0753 kcal · kg−1 · min−1 during recovery, tempo, and race pace, respectively (p < .0001). Bland–Altman plots indicated that the Actiheart consistently underestimated EEE except in 1 runner’s recovery bout. A linear mixed-model regression analysis with height as a covariate provided an improved EEE prediction model, with the overall standard error of the estimate for the 3 speeds reduced to 0.0101 kcal · kg−1 · min−1. Using the manufacturer’s equation that combines heart rate and uniaxial motion, the Actiheart may have limited use in accurately assessing EEE, and therefore energy availability, in young, female competitive runners.

Restricted access

James Cameron Morehen, Warren Jeremy Bradley, Jon Clarke, Craig Twist, Catherine Hambly, John Roger Speakman, James Peter Morton and Graeme Leonard Close

Rugby League is a high-intensity collision sport competed over 80 min. Training loads are monitored to maximize recovery and assist in the design of nutritional strategies although no data are available on the total energy expenditure (TEE) of players. We therefore assessed resting metabolic rate (RMR) and TEE in six Super League players over 2 consecutive weeks in-season including one game per week. Fasted RMR was assessed followed by a baseline urine sample before oral administration of a bolus dose of hydrogen (deuterium 2H) and oxygen (18O) stable isotopes in the form of water (2H2 18O). Every 24 hr thereafter, players provided urine for analysis of TEE via DLW method. Individual training load was quantified using session rating of perceived exertion (sRPE) and data were analyzed using magnitude-based inferences. There were unclear differences in RMR between forwards and backs (7.7 ± 0.5 cf. 8.0 ± 0.3 MJ, respectively). Indirect calorimetry produced RMR values most likely lower than predictive equations (7.9 ± 0.4 cf. 9.2 ± 0.4 MJ, respectively). A most likely increase in TEE from Week 1 to 2 was observed (17.9 ± 2.1 cf. 24.2 ± 3.4 MJ) explained by a most likelyincrease in weekly sRPE (432 ± 19 cf. 555 ± 22 AU), respectively. The difference in TEE between forward and backs was unclear (21.6 ± 4.2 cf. 20.5 ± 4.9 MJ, respectively). We report greater TEE than previously reported in rugby that could be explained by the ability of DLW to account for all match and training-related activities that contributes to TEE.

Restricted access

Alexander H.K. Montoye, Jordana Dahmen, Nigel Campbell and Christopher P. Connolly

Purpose: This purpose of this study was to validate consumer-based and research-grade PA monitors for step counting and Calorie expenditure during treadmill walking. Methods: Participants (n = 40, 24 in second trimester and 16 in third trimester) completed five 2-minute walking activities (1.5–3.5 miles/hour in 0.5 mile/hour increments) while wearing five PA monitors (right hip: ActiGraph Link [AG]; left hip: Omron HJ-720 [OM]; left front pants pocket: New Lifestyles NL 2000 [NL]; non-dominant wrist: Fitbit Flex [FF]; right ankle: StepWatch [SW]). Mean absolute percent error (MAPE) was used to determine device accuracy for step counting (all monitors) and Calorie expenditure (AG with Freedson equations and FF) compared to criterion measures (hand tally for steps, indirect Calorimetry for Calories). Results: For step counting, the SW had MAPE ≤ 10% at all walking speeds, and the OM and NL had MAPE ≤ 10% for all speeds but 1.5 miles/hour. The AG had MAPE ≤ 10% for only 3.0–3.5 miles/hour speeds, and the FF had high MAPE for all speeds. For Calories, the FF and AG had MAPE > 10% for all speeds, with the FF overestimating Calories expended. Trimester did not affect PA monitor accuracy for step counting but did affect accuracy for Calorie expenditure. Conclusion: The ankle-worn SW and hip-worn OM had high accuracy for measuring step counts at all treadmill walking speeds, whereas the NL had high accuracy for speeds ≥2.0 miles/hour. Conversely, the monitors tested for Calorie expenditure have poor accuracy and should be interpreted cautiously for walking behavior.

Restricted access

Eric T. Trexler, Katie R. Hirsch, Bill I. Campbell and Abbie E. Smith-Ryan

The purpose of the current study was to evaluate changes in body composition, metabolic rate, and hormones during postcompetition recovery. Data were collected from natural physique athletes (7 male/8 female) within one week before (T1) competition, within one week after (T2), and 4–6 weeks after (T3) competition. Measures included body composition (fat mass [FM] and lean mass [LM] from ultrasongraphy), resting metabolic rate (RMR; indirect calorimetry), and salivary leptin, testosterone, cortisol, ghrelin, and insulin. Total body water (TBW; bioelectrical impedance spectroscopy) was measured at T1 and T2 in a subsample (n = 8) of athletes. Significant (p < .05) changes were observed for weight (T1 = 65.4 ± 12.2 kg, T2 = 67.4 ± 12.6, T3 = 69.3 ± 13.4; T3 > T2 > T1), LM (T1 = 57.6 ± 13.9 kg, T2 = 59.4 ± 14.2, T3 = 59.3 ± 14.2; T2 and T3 > T1), and FM (T1 = 7.7 ± 4.4 kg, T2 = 8.0 ± 4.4, T3 = 10.0 ± 6.2; T3 > T1 and T2). TBW increased from T1 to T2 (Δ=1.9 ± 1.3 L, p < .01). RMR increased from baseline (1612 ± 266 kcal/day; 92.0% of predicted) to T2 (1881 ± 329, 105.3%; p < .01) and T3 (1778 ± 257, 99.6%; p < .001). Cortisol was higher (p < .05) at T2 (0.41 ± 0.31 μg/dL) than T1 (0.34 ± 0.31) and T3 (0.35 ± 0.27). Male testosterone at T3 (186.6 ± 41.3 pg/mL) was greater than T2 (148.0 ± 44.6, p = .04). RMR changes were associated (p ≤ .05) with change in body fat percent (ΔBF%; r = .59) and T3 protein intake (r= .60); male testosterone changes were inversely associated (p≤ .05) with ΔBF%, ΔFM, and Δweight (r=-0.81–-0.88). TBW increased within days of competition. Precompetition RMR suppression appeared to be variable and markedly reversed by overfeeding, and reverted toward normal levels following competition. RMR and male testosterone increased while FM was preferentially gained 4–6 weeks postcompetition.

Restricted access

Berit Steenbock, Marvin N. Wright, Norman Wirsik and Mirko Brandes

provide energy expenditure (EE) prediction models from raw accelerometry data established against indirect calorimetry, (2) to compare two linear and two machine learning models, and (3) to compare accuracy of different accelerometers placed on the hips, thigh, and wrists. Methods Study Participants To

Open access

Melanna F. Cox, Greg J. Petrucci Jr., Robert T. Marcotte, Brittany R. Masteller, John Staudenmayer, Patty S. Freedson and John R. Sirard

various features of the accelerometer data to estimate PA and SB. Algorithms to estimate PA from accelerometer data often rely on laboratory calibration studies that use indirect calorimetry as a criterion measure for activity intensity. Laboratory calibration protocols require participants to complete

Restricted access

of Indirect Calorimetry Measures of Energy Expenditure During Overground Walking in Older Adults With Mobility Limitations David M. Wert * Jessie M. VanSwearingen * Subashan Perera * Jennifer S. Brach * 7 2015 23 3 346 351 10.1123/japa.2013-0268 Age-Related Loss of Muscle Mass, Strength, and

Restricted access

Calorimetry Karsten Koehler * Thomas Abel * Birgit Wallmann-Sperlich * Annika Dreuscher * Volker Anneken * 4 2015 12 4 540 545 10.1123/jpah.2013-0294 Affective Response to Exercise and Preferred Exercise Intensity Among Adolescents Margaret Schneider * Priel Schmalbach * 4 2015 12 4 546 552 10