Search Results

You are looking at 81 - 90 of 229 items for :

  • "dual-energy X-ray absorptiometry" x
Clear All
Restricted access

Joyce E. Ballard, Lorraine S. Wallace, David B. Holiday, Cassandra Herron, Liberty L. Harrington, Karen C. Mobbs and Patricia Cussen

This study assessed differences in bone-mineral density (BMD) and lean and fat tissues between 5 age groups of White men age 65–93 years. Lean and fat tissues were measured with absorptiometry and anthropometry, and BMD, with dual-energy X-ray absorptiometry. Forearm, spinal, and femoral T scores were used to classify BMD as normal, osteopenic, or osteoporotic. A questionnaire evaluated previous physical activity, calcium intake, and bone fractures. Significantly lower values in body weight, lean tissue, and forearm BMD occurred in the older age groups. Significant, positive relationships were found between total lean tissue and radial, spinal, and hip BMDs. For the total group, osteopenic and osteoporotic T scores, respectively, were femoral neck 70.6% and 9.8%, radius 27.5% and 25.5%, and spine 25.5% and 7.8%. Differences in BMD values were found between levels of lifestyle factors (dietary calcium and history of previous fractures). In conclusion, elderly men should be encouraged to maintain adequate total lean tissue because of its association with BMD.

Restricted access

Alex S. Ribeiro, Fábio Luiz C. Pina, Soraya R. Dodero, Danilo R. P. Silva, Brad J. Schoenfeld, Paulo Sugihara Júnior, Rodrigo R. Fernandes, Décio S. Barbosa, Edilson S. Cyrino and Julio Tirapegui

The aim of this study was to analyze the effects of 8 weeks of conjugated linoleic acid (CLA) supplementation associated with aerobic exercise on body fat and lipid profile on obese women. We performed a randomized, double-blinded and placebo-controlled trial with 28 obese women who received 3.2 g/day of CLA or 4 g/day of olive oil (placebo group) while performing an 8-week protocol of aerobic exercise. Dietary intake (food record), body fat (dual-energy X-ray absorptiometry), and biochemical analysis (blood sample) were assessed before and after the intervention period. Independent of CLA supplementation, both groups improved (p < .05) oxygen uptake (CLA group, 13.2%; PLC group, 14.8%), trunk fat (CLA group, −1.0%; PLC group, −0.5%), leg fat (CLA group, −1.0%; PLC group, −1.6%), and total body fat (CLA group, −1.7%; PLC group, −1.3%) after the 8-week intervention. No main effect or Group × Time interaction was found for total cholesterol, triglycerides, and plasma lipoproteins (p > .05). We conclude that CLA supplementation associated with aerobic exercise has no effect on body fat reduction and lipid profile improvements over placebo in young adult obese women.

Restricted access

Gary Slater, David Jenkins, Peter Logan, Hamilton Lee, Matthew Vukovich, John A. Rathmacher and Allan G. Hahn

This investigation evaluated the effects of oral β-Hydroxy-β-Methylbutyrate (HMB) supplementation on training responses in resistance-trained male athletes who were randomly administered HMB in standard encapsulation (SH), HMB in time release capsule (TRH), or placebo (P) in a double-blind fashion. Subjects ingested 3 g · day−1 of HMB or placebo for 6 weeks. Tests were conducted pre-supplementation and following 3 and 6 weeks of supplementation. The testing battery assessed body mass, body composition (using dual energy x-ray absorptiometry), and 3-repetition maximum isoinertial strength, plus biochemical parameters, including markers of muscle damage and muscle protein turnover. While the training and dietary intervention of the investigation resulted in significant strength gains (p < .001) and an increase in total lean mass (p = .01), HMB administration had no influence on these variables. Likewise, biochemical markers of muscle protein turnover and muscle damage were also unaffected by HMB supplementation. The data indicate that 6 weeks of HMB supplementation in either SH or TRH form does not influence changes in strength and body composition in response to resistance training in strength-trained athletes.

Restricted access

Ana Anton-Solanas, Barry V. O’Neill, Tessa E. Morris and Joe Dunbar

Purpose:

To assess changes in body composition and monitor cognitive function, subjective well-being, and physiological stress, as measured by salivary hormones and markers of mucosal immunity, during an Antarctic expedition.

Methods:

A 36-y-old man (188.2 cm height, 94.5 kg body mass) took part in a world-record attempt. A total-body dual-energy X-ray absorptiometry scan and measurement of 8 skinfolds and 5 girths were performed before and after the expedition. In addition, daily subjective data were recorded (sleep quality, total hours of sleep, energy levels, perceived exertion, mood, muscle soreness, and muscle/joint pain) along with distance covered and hours of physical activity per day. As a measure of cognitive function, the athlete completed a computerized battery of tasks (Axon Sports Cognitive Priming Application) every third morning. Saliva samples were collected before, during, and after the expedition to determine salivary cortisol (sCort), testosterone (sT), alpha amylase (sAA), and secretory immunoglobulin A (sIgA).

Results:

The athlete lost 5.3 kg body mass and sum of 8 skinfolds decreased from 73 mm to 59 mm from preexpedition to postexpedition. Psychomotor speed declined over the course of the expedition. sT increased and sCort decreased throughout, and sAA and sIgA peaked toward the end of the expedition.

Conclusions:

This case study provides novel data about the physiological and cognitive impact of an Antarctic expedition. The findings may inform strategies for future expeditions, allowing individuals undertaking expeditions of this nature to better prepare for success.

Restricted access

Darren G. Candow, Natalie C. Burke, T. Smith-Palmer and Darren G. Burke

The purpose was to compare changes in lean tissue mass, strength, and myof-brillar protein catabolism resulting from combining whey protein or soy protein with resistance training. Twenty-seven untrained healthy subjects (18 female, 9 male) age 18 to 35 y were randomly assigned (double blind) to supplement with whey protein (W; 1.2 g/kg body mass whey protein + 0.3 g/kg body mass sucrose power, N = 9: 6 female, 3 male), soy protein (S; 1.2 g/kg body mass soy protein + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) or placebo (P; 1.2 g/kg body mass maltodextrine + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) for 6 wk. Before and after training, measurements were taken for lean tissue mass (dual energy X-ray absorptiometry), strength (1-RM for bench press and hack squat), and an indicator of myofbrillar protein catabolism (urinary 3-methylhistidine). Results showed that protein supplementation during resistance training, independent of source, increased lean tissue mass and strength over isocaloric placebo and resistance training (P < 0.05). We conclude that young adults who supplement with protein during a structured resistance training program experience minimal beneficial effects in lean tissue mass and strength.

Restricted access

Sakiho Miyauchi, Satomi Oshima, Meiko Asaka, Hiroshi Kawano, Suguru Torii and Mitsuru Higuchi

The purpose of this study was to determine whether overfeeding and high-intensity physical training increase organ mass. We examined this question using cross-sectional and longitudinal studies in which we measured collegiate male American football players. Freshman (n = 10) and senior players in their second and third years of college (n = 17) participated in the cross-sectional study. The same measurements of the same freshman players (n = 10) were assessed after the one-year weight gain period in the longitudinal study. Fat-free mass (FFM), skeletal muscle, and adipose tissue mass were obtained using dual-energy X-ray absorptiometry. Liver, kidney, brain, and heart volumes were calculated using magnetic resonance imaging or echocardiography. Compared with the freshman players, the senior players had 10.8 kg more FFM, and 0.29 kg, 0.08 kg, and 0.09 kg greater liver, heart, and kidney mass, respectively. In the longitudinal study, FFM, liver, heart, and kidney mass of the freshman players increased by 5.2 kg, 0.2 kg, 0.04 kg, and 0.04 kg, respectively, after one year of overfeeding and physical training. On the other hand, the organ-tissue mass to FFM ratio did not change, except for the brain, in either the cross-sectional or longitudinal studies. Our results indicated that the organtissue masses increased with overfeeding and physical training in male collegiate American football players.

Restricted access

Han C.G. Kemper

This paper reviews the growth and development of skeletal mass in youth and the effects of physical activity upon the bone mass in young people. The different methods to measure the bone mass are described such as anthropometrics, radiographics, dual energy X-ray absorptiometry, quantitative computed tomography, and ultrasound. Two different mechanisms are important for the formation and plasticity of bone: a central hormonal mechanism (with estrogen production) and a local mechanism (based on mechanical forces of gravity and muscle contractions). This local mechanism is closely connected to physical activity patterns and therefore discussed in more detail. Thereafter the natural course of the development of the bone mass during youth is described, taking into account the pubertal stages of boys and girls and also the age at which the maximal bone mass (peak bone mineral density) will be reached. The last part is devoted to the effects of physical activity on bone mass based on results of randomized controlled trials. Although the number of experimental studies are scarce, significant effects of weight bearing activity and high impact strength training programs are shown on the side specific bone mineral density in both boys and girls.

Restricted access

Katherine A. Beals and Amanda K. Hill

The purpose of this study was to examine the prevalence of disordered eating (DE), menstrual dysfunction (MD), and low bone mineral density (BMD) among US collegiate athletes (n = 112) representing 7 different sports (diving, swimming, x-country, track, tennis, field hockey, and softball) and determine differences in prevalence existed between athletes participating in lean-build (LB) and non-lean build (NLB) sports. DE and MD were assessed by a health, weight, dieting, and menstrual history questionnaire. Spinal BMD was determined via dual energy x-ray absorptiometry. Twenty-eight athletes met the criteria for DE, twenty-nine for MD, and two athletes had low BMDs (using a Z score below −2.0). Ten athletes met the criteria for two disorders (one with disordered eating and low BMD and nine with disordered eating and menstrual dysfunction), while only one athlete met the criteria for all three disorders. Using a Z score below −1.0, two additional athletes met the criteria for all three disorders and three more athletes met the criteria for a combination of two disorders. With the exception of MD, which was significantly more prevalent among LB vs. NLB sports (P = 0.053), there were no differences between the groups in the prevalence of individual disorders or combinations of disorders. These data indicate that the combined prevalence of DE, MD, and low BMD among collegiate athletes is small; however, a significant number suffer from individual disorders of the Triad.

Restricted access

Alex S. Ribeiro, Brad J. Schoenfeld, Danilo R.P. Silva, Fábio L.C. Pina, Débora A. Guariglia, Marcelo Porto, Nailza Maestá, Roberto C. Burini and Edilson S. Cyrino

The purpose of this study was to compare different split resistance training routines on body composition and muscular strength in elite bodybuilders. Ten male bodybuilders (26.7 ± 2.7 years, 85.3 ± 10.4 kg) were randomly assigned into one of two resistance training groups: 4 and 6 times per week (G4× and G6×, respectively), in which the individuals trained for 4 weeks, 4 sets for each exercise performing 6–12 repetitions maximum (RM) in a pyramid fashion. Body composition was assessed by dual energy X-ray absorptiometry, muscle strength was evaluated by 1RM bench-press testing. The food intake was planned by nutritionists and offered individually throughout the duration of the experiment. Significant increases (p < .05) in fat-free mass (G4× = +4.2%, G6× = +3.5%) and muscular strength (G4× = +8.4%, G6× = +11.4%) with no group by time interaction were observed. We conclude that 4 and 6 weekly sessions frequencies of resistance training promote similar increases in fat-free mass and muscular strength in elite bodybuilders.

Restricted access

Stacy D. Hunter, Mandeep S. Dhindsa, Emily Cunningham, Takashi Tarumi, Mohammed Alkatan, Nantinee Nualnim and Hirofumi Tanaka

Background:

Obesity is associated with arterial stiffening and diminished quality of life. Bikram yoga may be a feasible alternative to traditional exercise among obese individuals. Accordingly, the purpose of this study was to investigate the impact of Bikram yoga, a heated style of hatha yoga, on arterial stiffness in normal and overweight/obese adults.

Methods:

Forty-three (23 normal body mass index or BMI; 20 overweight/obese) apparently healthy participants completed an 8-week Bikram yoga intervention. Body composition was estimated via dual energy x-ray absorptiometry, arterial stiffness was measured via brachialankle pulse wave velocity, and health-related quality of life was assessed via RAND 36-Item Short Form survey at baseline and at the end of the 8-week intervention.

Results:

After the intervention, brachial-ankle pulse wave velocity decreased (P < .05) in overweight/obese participants while no such changes were observed in normal BMI participants. In the quality of life measures, emotional well-being improved (P < .05) in both groups, and general health improved (P < .05) only in the normal weight BMI group.

Conclusion:

Bikram yoga ameliorates arterial stiffness in overweight/obese adults and can positively impact quality of life regardless of BMI.