Search Results

You are looking at 81 - 90 of 240 items for :

  • "dual-energy X-ray absorptiometry" x
Clear All
Restricted access

Nai-Hsin Meng, Chia-Ing Li, Chiu-Shong Liu, Wen-Yuan Lin, Chih-Hsueh Lin, Chin-Kai Chang, Tsai-Chung Li and Cheng-Chieh Lin

Objectives:

To compare muscle strength and physical performance among subjects with and without sarcopenia of different definitions.

Design:

A population-based cross-sectional study.

Participants:

857 community residents aged 65 years or older.

Methods:

Sarcopenia was defined according to the European Working Group of Sarcopenia in Older People consensus criteria. Dual-energy X-ray absorptiometry measured lean soft tissue mass. Sarcopenic participants with low height-adjusted or weight-adjusted skeletal muscle index (SMI) were classified as having h-sarcopenia or w-sarcopenia, respectively. Combined sarcopenia (c-sarcopenia) was defined as having either h- or w-sarcopenia. The participants underwent six physical performance tests: walking speed, timed up-and-go, six-minute walk, single-leg stance, timed chair stands, and flexibility test. The strength of five muscle groups was measured.

Results:

Participants with h-sarcopenia had lower weight, body mass index (BMI), fat mass, and absolute muscle strength (p ≤ .001); those with w-sarcopenia had higher weight, BMI, fat mass (p < .001), and low relative muscle strength (p ≤ .003). Participants with c-sarcopenia had poorer performance in all physical performance tests, whereas h-sarcopenia and w-sarcopenia were associated with poor performance in four tests.

Conclusion:

Subjects with h- and w-sarcopenia differ significantly in terms of obesity indicators. Combining height- and weight-adjusted SMIs can be a feasible method to define sarcopenia.

Restricted access

Herculina S. Kruger, Lize Havemann-Nel, Chrisna Ravyse, Sarah J. Moss and Michael Tieland

Background:

Black women are believed to be genetically less predisposed to age-related sarcopenia. The objective of this study was to investigate lifestyle factors associated with sarcopenia in black South African (SA) urban women.

Methods:

In a cross-sectional study, 247 women (mean age 57 y) were randomly selected. Anthropometric and sociodemographic variables, dietary intakes, and physical activity were measured. Activity was also measured by combined accelerometery/heart rate monitoring (ActiHeart), and HIV status was tested. Dual energy x-ray absorptiometry was used to measure appendicular skeletal mass (ASM). Sarcopenia was defined according to a recently derived SA cutpoint of ASM index (ASM/height squared) < 4.94 kg/m2.

Results:

In total, 8.9% of the women were sarcopenic, decreasing to 8.1% after exclusion of participants who were HIV positive. In multiple regressions with ASM index, grip strength, and gait speed, respectively, as dependent variables, only activity energy expenditure (β = .27) was significantly associated with ASM index. Age (β = –.50) and activity energy expenditure (β = .17) were significantly associated with gait speed. Age (β = –.11) and lean mass (β = .21) were significantly associated with handgrip strength.

Conclusions:

Sarcopenia was prevalent among these SA women and was associated with low physical activity energy expenditure.

Restricted access

Melissa Hodge, Mary Hovinga, Kelley Gabriel, Linda Snetselaar, John Shepherd, Linda Van Horn, Victor Stevens, Brian Egleston, Alan Robson, Seungyoun Jung and Joanne Dorgan

This study prospectively investigates associations between youth moderate-to-vigorous-intensity physical activity (MVPA) and body composition in young adult women using data from the Dietary Intervention Study in Children (DISC) and the DISC06 Follow-Up Study. MVPA was assessed by questionnaire on 5 occasions between the ages 8 and 18 years and at age 25-29 years in 215 DISC female participants. Using whole body dual-energy x-ray absorptiometry (DXA), overall adiposity and body fat distribution were assessed at age 25-29 years by percent body fat (%fat) and android-to-gynoid (A:G) fat ratio, respectively. Linear mixed effects models and generalized linear latent and mixed models were used to assess associations of youth MVPA with both outcomes. Young adult MVPA, adjusted for other young adult characteristics, was significantly inversely associated with young adult %fat (%fat decreased from 37.4% in the lowest MVPA quartile to 32.8% in the highest (p-trend = 0.02)). Adjusted for youth and young adult characteristics including young adult MVPA, youth MVPA also was significantly inversely associated with young adult %fat (β=-0.40 per 10 MET-hrs/wk, p = .02) . No significant associations between MVPA and A:G fat ratio were observed. Results suggest that youth and young adult MVPA are important independent predictors of adiposity in young women.

Restricted access

Stacy D. Hunter, Mandeep S. Dhindsa, Emily Cunningham, Takashi Tarumi, Mohammed Alkatan, Nantinee Nualnim and Hirofumi Tanaka

Background:

Obesity is associated with arterial stiffening and diminished quality of life. Bikram yoga may be a feasible alternative to traditional exercise among obese individuals. Accordingly, the purpose of this study was to investigate the impact of Bikram yoga, a heated style of hatha yoga, on arterial stiffness in normal and overweight/obese adults.

Methods:

Forty-three (23 normal body mass index or BMI; 20 overweight/obese) apparently healthy participants completed an 8-week Bikram yoga intervention. Body composition was estimated via dual energy x-ray absorptiometry, arterial stiffness was measured via brachialankle pulse wave velocity, and health-related quality of life was assessed via RAND 36-Item Short Form survey at baseline and at the end of the 8-week intervention.

Results:

After the intervention, brachial-ankle pulse wave velocity decreased (P < .05) in overweight/obese participants while no such changes were observed in normal BMI participants. In the quality of life measures, emotional well-being improved (P < .05) in both groups, and general health improved (P < .05) only in the normal weight BMI group.

Conclusion:

Bikram yoga ameliorates arterial stiffness in overweight/obese adults and can positively impact quality of life regardless of BMI.

Restricted access

Han C.G. Kemper

This paper reviews the growth and development of skeletal mass in youth and the effects of physical activity upon the bone mass in young people. The different methods to measure the bone mass are described such as anthropometrics, radiographics, dual energy X-ray absorptiometry, quantitative computed tomography, and ultrasound. Two different mechanisms are important for the formation and plasticity of bone: a central hormonal mechanism (with estrogen production) and a local mechanism (based on mechanical forces of gravity and muscle contractions). This local mechanism is closely connected to physical activity patterns and therefore discussed in more detail. Thereafter the natural course of the development of the bone mass during youth is described, taking into account the pubertal stages of boys and girls and also the age at which the maximal bone mass (peak bone mineral density) will be reached. The last part is devoted to the effects of physical activity on bone mass based on results of randomized controlled trials. Although the number of experimental studies are scarce, significant effects of weight bearing activity and high impact strength training programs are shown on the side specific bone mineral density in both boys and girls.

Restricted access

Darren G. Candow, Natalie C. Burke, T. Smith-Palmer and Darren G. Burke

The purpose was to compare changes in lean tissue mass, strength, and myof-brillar protein catabolism resulting from combining whey protein or soy protein with resistance training. Twenty-seven untrained healthy subjects (18 female, 9 male) age 18 to 35 y were randomly assigned (double blind) to supplement with whey protein (W; 1.2 g/kg body mass whey protein + 0.3 g/kg body mass sucrose power, N = 9: 6 female, 3 male), soy protein (S; 1.2 g/kg body mass soy protein + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) or placebo (P; 1.2 g/kg body mass maltodextrine + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) for 6 wk. Before and after training, measurements were taken for lean tissue mass (dual energy X-ray absorptiometry), strength (1-RM for bench press and hack squat), and an indicator of myofbrillar protein catabolism (urinary 3-methylhistidine). Results showed that protein supplementation during resistance training, independent of source, increased lean tissue mass and strength over isocaloric placebo and resistance training (P < 0.05). We conclude that young adults who supplement with protein during a structured resistance training program experience minimal beneficial effects in lean tissue mass and strength.

Restricted access

Heidi L. Petersen, C. Ted Peterson, Manju B. Reddy, Kathy B. Hanson, James H. Swain, Rick L. Sharp and D. Lee Alekel

This study determined the effect of training on body composition, dietary intake, and iron status of eumenorrheic female collegiate swimmers (n = 18) and divers (n = 6) preseason and after 16 wk of training. Athletes trained on dryland (resistance, strength, fexibility) 3 d/wk, 1.5 h/d and in-water 6 d/wk, nine, 2-h sessions per week (6400 to 10,000 kJ/d). Body-mass index (kg/m2; P = 0.05), waist and hip circumferences (P ≤ 0.0001), whole body fat mass (P = 0.0002), and percentage body fat (P ≤ 0.0001) decreased, whereas lean mass increased (P = 0.028). Using dual-energy X-ray absorptiometry, we found no change in regional lean mass, but fat decreased at the waist (P = 0.0002), hip (P = 0.0002), and thigh (P = 0.002). Energy intake (10,061 ± 3617 kJ/d) did not change, but dietary quality improved with training, as refected by increased intakes of fber (P = 0.036), iron (P = 0.015), vitamin C (P = 0.029), vitamin B-6 (P = 0.032), and fruit (P = 0.003). Iron status improved as refected by slight increases in hemoglobin (P = 0.046) and hematocrit (P = 0.014) and decreases in serum transferrin receptor (P ≤ 0.0001). Studies are needed to further evaluate body composition and iron status in relation to dietary intake in female swimmers.

Restricted access

Hawley Chase Almstedt and Zakkoyya H. Lewis

Context:

Intermittent pneumatic compression (IPC) is a common therapeutic modality used to reduce swelling after trauma and prevent thrombosis due to postsurgical immobilization. Limited evidence suggests that IPC may decrease the time needed to rehabilitate skeletal fractures and increase bone remodeling.

Objective:

To establish feasibility and explore the novel use of a common therapeutic modality, IPC, on bone mineral density (BMD) at the hip of noninjured volunteers.

Design:

Within-subjects intervention.

Setting:

University research laboratory.

Participants:

Noninjured participants (3 male, 6 female) completed IPC treatment on 1 leg 1 h/d, 5 d/wk for 10 wk. Pressure was set to 60 mm Hg when using the PresSsion and Flowtron Hydroven compression units.

Main Outcome Measures:

Dual-energy X-ray absorptiometry was used to assess BMD of the hip in treated and nontreated legs before and after the intervention. Anthropometrics, regular physical activity, and nutrient intake were also assessed.

Results:

The average number of completed intervention sessions was 43.4 (± 3.8) at an average duration of 9.6 (± 0.8) wk. Repeated-measures analysis of variance indicated a significant time-by-treatment effect at the femoral neck (P = .023), trochanter (P = .027), and total hip (P = .008). On average, the treated hip increased 0.5–1.0%, while the nontreated hip displayed a 0.7–1.9% decrease, depending on the bone site.

Conclusion:

Results of this exploratory investigation suggest that IPC is a therapeutic modality that is safe and feasible for further investigation on its novel use in optimizing bone health.

Restricted access

Thomas B. Walker, Jessica Smith, Monica Herrera, Breck Lebegue, Andrea Pinchak and Joseph Fischer

The purpose of this study was to investigate the ability of whey-protein and leucine supplementation to enhance physical and cognitive performance and body composition. Thirty moderately fit participants completed a modified Air Force fitness test, a computer-based cognition test, and a dual-energy X-ray-absorptiometry scan for body composition before and after supplementing their daily diet for 8 wk with either 19.7 g of whey protein and 6.2 g leucine (WPL) or a calorie-equivalent placebo (P). Bench-press performance increased significantly from Week 1 to Week 8 in the WPL group, whereas the increase in the P group was not significant. Push-up performance increased significantly for WPL, and P showed a nonsignificant increase. Total mass, fat-free mass, and lean body mass all increased significantly in the WPL group but showed no change in the P group. No differences were observed within or between groups for crunches, chin-ups, 3-mile-run time, or cognition. The authors conclude that supplementing with whey protein and leucine may provide an advantage to people whose performance benefits from increased upper body strength and/or lean body mass.

Restricted access

Alessandra Madia Mantovani, Scott Duncan, Jamile Sanches Codogno, Manoel Carlos Spiguel Lima and Rômulo Araújo Fernandes

Background:

Physical activity level is an important tool to identify individuals predisposed to developing chronic diseases, which represent a major concern worldwide.

Objective:

To identify correlates of daily step counts measured using pedometers, as well as analyze the associations between health outcomes and 3 different amounts of daily physical activity.

Methods:

The sample comprised 278 participants (126 men and 153 women) with a mean age of 46.51 ± 9.02 years. Physical activity was assessed using pedometers for 7 consecutive days, and 3 amounts of daily physical activity were considered: ≥10,000 steps/day, ≥7500 steps/day, and <5000 steps/day. Sleep quality was assessed through a questionnaire, and dual-energy x-ray absorptiometry was used to measure body fat. Sociodemographic and anthropometric data were also collected.

Results:

The percentages of adults achieving at least 10,000 and 7500 steps/day on a minimum of 5 days of the evaluated week were 12.9% and 30.9%, respectively. Adults who reached ≥7500 steps/day had a lower likelihood of being obese (odds ratio [OR] = 0.38, 95% confidence interval [CI], 0.17–0.85) and reporting worse sleep quality (OR = 0.58, 95% CI, 0.34–0.99). Adults who reached <5000 steps/day had a higher likelihood of reporting worse sleep quality (OR = 2.11, 95% CI, 1.17–3.82).

Conclusion:

Physical activity in adulthood, as measured by pedometer, constituted a behavior related to lower adiposity and better sleep quality.