Search Results

You are looking at 81 - 90 of 301 items for :

  • "force platform" x
Clear All
Restricted access

Dana Forrest, Janet S. Dufek and John A. Mercer

The purpose of this study was to determine if ground reaction forces were influenced by shoe design (adult vs. youth) for female children when running. Subjects (n = 10, 12.0 ± 1.1 years old; 154 ± 4.9 cm; 46.2 ± 14.3 kg; shoe size 3.5–7 youth) were fit with a shoe model available in youth and adult sizes. Subjects ran 10 trials per shoe condition across a force platform placed in the middle of a 9-m runway. Impact force, second maximum force, loading rate, stance time and average vertical ground reaction forces were recorded for each trial. Shoes underwent a mechanical impact test with peak force, peak acceleration, and percent energy returned recorded. Each variable was compared between shoe conditions. From the impact testing, it was determined that peak force, peak acceleration and percent energy return were 7.1%, 7.1%, and 18.9% greater, respectively, for the youth vs. adult shoe (p < .001). From the running tests, it was determined that loading rate was different (p = .009) between shoe conditions whereas impact force, second maximum force, average force and stance time were not different between shoes (p > .01). Young girls had a greater loading rate when running in youth vs. adult shoes even though the shoe size was the same.

Restricted access

Andrew W. Smith

The aims of the present study were to quantify lower limb kinetics and kinematics during walking and slow jogging of below-knee amputee athletes and to demonstrate the usefulness of the additional information provided by kinetic analyses as compared to that of kinematic assessments alone. Kinematic and force platform data from three amputee subjects were collected while the subjects walked and jogged in the laboratory. Results indicated that neither prosthesis (SACH and an energy-storing carbon fiber or ESCF) emulated the kinetics or the kinematics of so-called normal gait during walking. While the knee joint on the prosthetic side clearly tended to be biased toward extension during stance, the knee flexors were dominant and acted concentrically during this phase of the gait cycle. An examination of prosthetic limb hip and knee joint kinetics at both cadences revealed the functional role played by the hamstrings early in stance. The results indicated that with increasing cadence, less variability, measured by coefficients of variation, was evident in the kinematic data while the opposite was true for the kinetics.

Restricted access

Ross H. Sanders, Barry D. Wilson and Robert K. Jensen

This study investigated whether force data could be derived accurately using segment inertia data determined by the elliptical zone method (Jensen, 1976), automatic digitizing from high-speed video using a Motion Analysis VP110 system, and for an activity that does not require flexion of the thorax. The criterion fonctions were the force-time records of the jumps recorded at 500 Hz by a Kistler 9281B force platform. A second-order Butterworth digital filter was used to smooth the derived data, with frequency cutoffs being selected on the basis of root mean square error of the smoothed function with respect to the criterion force function. In a second procedure, the criterion function was the directly measured force-time record after filtering with a second-order Butterworth digital filter at 5 Hz to remove the high frequency part of the force signal. The closeness of fit of the derived data to the low frequency part of the criterion force was then assessed. It was concluded that, using the techniques described, the low frequency components of the ground reaction forces of drop jumps could be derived accurately.

Restricted access

Pablo Floría and Andrew J. Harrison

The aim of this study was to evaluate the effect of age on the use of arm swing in the vertical jump. Counter-movement jumps with arms (CMJA) and without arms (CMJ) performed by 36 girls and 20 adult females were examined using force platform analysis. The data were analyzed to determine differences between groups and between types of jump. The analysis of the data indicated that the arm action increased the jump height in both groups, although the increase was greater in children than adults (22.6% and 18.7% respectively; P < .05). This difference in jump height was due to a combination of a greater increase of the height at take-off in children compared with adults (40.6% and 21.6% respectively; P < .05) with no differences in the increase of the flight height. This increase in height of take-off was accompanied by an increase in the distance of propulsion in CMJA compared with CMJ (0.25 m and 0.23 m respectively; P < .05). The results suggested that children take advantage of the action of the arms in vertical jump differently than adults. The children improved their jump height by increasing height at take-off whereas the adults improved by increasing the flight height.

Restricted access

Juan J. Salinero, Cristina González-Millán, Javier Abián-Vicén and Juan Del Coso Garrigós

The goal of dorsiflexion sports shoes is to increase jumping capacity by means of a lower position of the heel in relation to the forefoot which results in additional stretching of the ankle plantar flexors. The aim of this study was to compare a dorsiflexion sports shoe model with two conventional sports shoe models in a countermovement jump test. The sample consisted of 35 participants who performed a countermovement jump test on a force platform wearing the three models of shoes. There were significant differences in the way force was manifested (P < 0.05) in the countermovement jump test, with a decrease in the velocity of the center of gravity and an increase in force at peak power and mean force in the concentric phase. Moreover, peak power was reached earlier with the dorsiflexion sports shoe model. The drop of the center of gravity was increased in CS1 in contrast to the dorsiflexion sports shoe model (P < .05). However, the dorsiflexion sports shoes were not effective for improving either peak power or jump height (P > .05). Although force manifestation and jump kinetics differ between dorsiflexion shoes and conventional sports shoes, jump performance was similar.

Restricted access

Yu Shu, Jonathan Drum, Stephanie Southard, Gwanseob Shin and Gary A. Mirka

There are many outdoor work environments that involve the combination of repetitive, fatiguing lifting tasks and less-than-optimal footing (muddy/slippery ground surfaces). The focus of the current research was to evaluate the effects of lifting-induced fatigue of the low back extensors on lifting kinematics and ground reaction forces. Ten participants performed a repetitive lifting task over a period of 8 minutes. As they performed this task, the ground reaction forces and whole body kinematics were captured using a force platform and magnetic motion tracking system, respectively. Fatigue was verified in this experiment by documenting a decrease in the median frequency of the bilateral erector spinae muscles (pretest-posttest). Results indicate significant (p < 0.05) increases in the magnitude of the peak anterior/posterior (increased by an average of 18.3%) and peak lateral shear forces (increased by an average of 24.3%) with increasing time into the lifting bout. These results have implications for work environments such as agriculture and construction, where poor footing conditions and requirements for considerable manual materials handling may interact to create an occupational scenario with an exceptionally high risk of a slip and fall.

Restricted access

George J. Salem, Sean P. Flanagan, Man-Ying Wang, Joo-Eun Song, Stanley P. Azen and Gail A. Greendale

Stepping activities when wearing a weighted vest may enhance physical function in older persons. Using 3 weighted-vest resistance dosages, this study characterized the lower-extremity joint biomechanics associated with stepping activities in elders. Twenty healthy community-dwelling older adults, ages 74.5 ± 4.5 yrs, performed 3 trials of forward step-up and lateral step-up exercises while wearing a weighted vest which added 0% body weight (BW), 5% BW, or 10% BW. They performed these activities on a force platform while instrumented for biomechanical analysis. Repeated-measures ANOVA was used to evaluate the differences in ankle, knee, and hip maximum joint angles, peak net joint moments, joint powers, and impulses among both steping activities and the 3 loading conditions. Findings indicated that the 5% BW vest increased the kinetic output associated with the exercise activities at all three lower-extremity joints. These increases ranged from 5.9% for peak hip power to 12.5% for knee extensor impulse. The application of an additional 5% BW resistance did not affect peak joint moments or powers, but it did increase the joint impulses by 4–11%. Comparisons between exercise activities, across the 3 loading conditions, indicated that forward stepping preferentially targeted the hip extensors while lateral stepping targeted the plantar flexors; both activities equally targeted the knee extensors. Weighted-vest loads of 5% and 10% BW substantially increased the mechanical demand on the knee extensors, hip extensors (forward stepping), and ankle plantar flexors (lateral stepping).

Restricted access

Benno M. Nigg and H. Alexander Bahlsen

The purpose of this study was to determine the influence of lateral heel flare on pronation, external impact forces, and takeoff supination for different midsole constructions. Data were collected using force platforms and high-speed film cameras. Fourteen male subjects participated in the study, running heel-toe at a speed of 4 m/s. The analysis of kinetic and kinematic variables showed that changes in lateral heel flare of 16°, 0°, and a rounded heel can be used to influence initial pronation during heel-toe running. It could be shown that changes in lateral heel flare do not have a relevant influence on changes in total and/or maximal pronation. Changes in lateral heel flare do have an effect on vertical impact force peaks if the midsole is relatively hard but not if the midsole is relatively soft. Based on the present study, a running shoe with a relatively hard midsole material and a neutral flare would have low initial pronation values and low vertical impact force peaks.

Restricted access

Zheng Wang, Kimberlee Jordan and Karl M. Newell

In this study, two force platforms were synchronized to investigate the coordination of the right and left foot center of pressure (COPR and COPL) and its relation to the COPNET in the control of 5 upright postures with and without visual information. The results revealed that the standard deviation (SD) of COPL, COPR, and COPNET progressively increased in the more challenging staggered and tandem stances, respectively, and to a lesser degree with the absence of visual information. Circular analysis of the relative phase of COPL and COPR revealed that the coupling pattern and variability were dependent on postural stances and the availability of vision. A negative correlation between the variability of the relative phase of the two feet COPs and the SD of the COPNET in the anterior-posterior (AP) direction was evident most strongly in the no vision conditions. Thus, the asymmetry of the mechanical constraints on the feet as a function of stance organize the coordination patterns of the feet COPs while the degree of adaptive variation between the feet COPs is dependent on both the mechanical constraints and the availability of vision.

Restricted access

Neil E. Bezodis, Aki I.T. Salo and Grant Trewartha

Two-dimensional analyses of sprint kinetics are commonly undertaken but often ignore the metatarsal-phalangeal (MTP) joint and model the foot as a single segment. The aim of this study was to quantify the role of the MTP joint in the early acceleration phase of a sprint and to investigate the effect of ignoring the MTP joint on the calculated joint kinetics at the other stance leg joints. High-speed video and force platform data were collected from four to five trials for each of three international athletes. Resultant joint moments, powers, and net work at the stance leg joints during the first stance phase after block clearance were calculated using three different foot models. Considerable MTP joint range of motion (>30°) and a peak net MTP plantar flexor moment of magnitude similar to the knee joint were observed, thus highlighting the need to include this joint for a more complete picture of the lower limb energetics during early acceleration. Inclusion of the MTP joint had minimal effect on the calculated joint moments, but some of the calculated joint power and work values were significantly (P < .05) and meaningfully affected, particularly at the ankle. The choice of foot model is therefore an important consideration when investigating specific aspects of sprinting technique.