Search Results

You are looking at 81 - 90 of 339 items for :

  • "high-intensity exercise" x
Clear All
Restricted access

Ben M. Krings, Timothy J. Peterson, Brandon D. Shepherd, Matthew J. McAllister and JohnEric W. Smith

The purpose of this investigation was to examine to the influence of carbohydrate ingestion (CHOI) and carbohydrate mouth rinse (CHOR) on acute repeat maximal sprint performance. Fourteen healthy males (age: 21.7 ± 1.8 years, mass: 82.3 ± 12.3 kg) completed a total of five 15-s maximal repeat sprints on a cycle ergometer against 0.075 kg ・ kg-1 body mass each separated by 4 min of active recovery. Subjects completed four experimental trials and were randomly assigned one of four treatments: (1) CHOI, (2) CHOR, (3) placebo mouth rinse (PLAR), (4) placebo ingestion (PLAI). Subjects rinsed or ingested six 50 mL 10% CHO solutions throughout each trial. Performance variables measured included rating of perceived exertion, peak heart rate, peak and mean power output, fatigue index, and total work. Significant treatment main effects were observed for mean power output (p = 0.026), total work (p = 0.020), fatigue index (p = 0.004), and heart rate (p = 0.013). Overall mean power output and total work were significantly greater with CHOI (659.3 ± 103.0 watts, 9849.8 ± 1598.8 joules) compared with CHOR (645.8 ± 99.7 watts, 9447.5 ± 1684.9 joules, p < .05). CHOI (15.3 ± 8.6 watts/s) significantly attenuated fatigue index compared with CHOR (17.7 ± 10.4 watts/s, p < .05). Based on our findings, CHOI was more likely to provide a beneficial performance effect compared with CHOR, PLAI, and PLAR. Athletes required to complete repeat bouts of high intensity exercise may benefit from CHOI.

Restricted access

Gulshanara Begum, Adam Cunliffe and Michael Leveritt

High-intensity exercise leads to reductions in muscle substrates (ATP, PCr, and glycogen) and a subsequent accumulation of metabolites (ADP, Pi, H+, and Mg2+) with a possible increase in free radical production. These factors independently and collectively have deleterious effects on muscle, with significant repercussions on high-intensity performance or training sessions. The effect of carnosine on overcoming muscle fatigue appears to be related to its ability to buffer the increased H+ concentration following high-intensity work. Carnosine, however, has other roles such as an antioxidant, a metal chelator, a Ca2+ and enzyme regulator, an inhibitor of protein glycosylation and protein-protein cross-linking. To date, only 1 study has investigated the effects of carnosine supplementation (not in pure form) on exercise performance in human subjects and found no improvement in repetitive high-intensity work. Much data has come from in vitro work on animal skeletal muscle fibers or other components of muscle contractile mechanisms. Thus further research needs to be carried out on humans to provide additional understanding on the effects of carnosine in vivo.

Restricted access

Stephen R. Stannard, Martin W. Thompson and Janette C. Brand Miller

Consumption of low glycemic index (GI) foods before submaximal endurance exercise may be beneficial to performance. To test whether this may also be true for high intensity exercise. 10 trained cyclists began an incremental exercise test to exhaustion 65 min after consuming equal carbohydrate portions of glucose (HGI), pasta (LGI), and a noncarbohydrate control (PL). Time to fatigue did not differ significantly (p = 0.05) between treatments. Plasma glucose concentration was significantly lower after LGI vs. HGI from 15 to 45 min of rest postprandial. During exercise, plasma glucose concentration was significantly lower after HGI vs. LGI from 200 W until exhaustion. Plasma lactate concentration following HGI was significantly higher than PL from 30 min of rest postprandial through to the end of the 200-W workload. Plasma lactate concentration following LGI was significantly lower than after HGI from 45 min of rest postprandial through to the end of the 100-W workload. At higher exercise intensities, there was no significant difference in plasma lactate levels between treatments. These findings suggest that a high GI carbohydrate meal (1 g/kg body wt) 65 min prior to exercise decreases plasma glucose and increases plasma lactate levels compared to a low GI meal, but not enough to be detrimental to incremental exercise performance.

Restricted access

Stephanie Whisnant Cash, Shirley A.A. Beresford, Thomas L. Vaughan, Patrick J. Heagerty, Leslie Bernstein, Emily White and Marian L. Neuhouser


Limited evidence suggests that very high-intensity exercise is positively associated with DNA damage but moderate exercise may be associated with DNA repair.


Participants were 220 healthy, Washington State 50- to 76-year-olds in the validity/biomarker substudy of the VITamins And Lifestyle (VITAL) cohort, who provided blood samples and completed questionnaires assessing recent physical activity and demographic and health factors. Measures included nested activity subsets: total activity, moderate- plus high-intensity activity, and high-intensity activity. DNA damage (n = 122) and repair (n = 99) were measured using the comet assay. Multivariate linear regression was used to estimate regression coefficients and associated 95% confidence intervals (CIs) for relationships between MET-hours per week of activity and each DNA outcome (damage, and 15- and 60-minute repair capacities).


DNA damage was not associated with any measure of activity. However, 60-minute DNA repair was positively associated with both total activity (β = 0.21, 95% CI: 0.0057–0.412; P = .044) and high-intensity activity (β = 0.31, 95% CI: 0.20–0.60; P = .036), adjusting for age, sex, BMI, and current multivitamin use.


This study is the first to assess broad ranges of activity intensity levels related to DNA damage and repair. Physical activity was unrelated to DNA damage but was associated with increased repair.

Restricted access

Darryn S. Willoughby, Mark Roozen and Randall Barnes

This study attempted to determine the effects of 12-week low- and high-intensity aerobic exercise programs on functional capacity and cardiovascular efficiency of elderly post-coronary artery bypass graft (CABG) patients. Time (Timemax). estimated maximum VO2 (VO2max), heart rate (HRmax), systolic blood pressure(SBPmax), estimated mean arterial blood pressure (MABPmax), and rate × pressure product (RPPmax) were assessed during graded exercise tests before and after 12 weeks of low-intensity (65% HRmax) and high-intensity (85% HRmax) exercise. Subjects (n = 92) were placed in either a low-intensity (LIEX), high-intensity (HIEX), or nonexercising control group (CON). LIEX and HIEX showed increases from pre- to postprogram for Timemax and VO2max. LIEX and HIEX showed decreases for SBPmax, MABPmax, and RPPmax. HIEX and LIEX produced greater improvements than CON for these four variables, while HIEX was superior to LIEX. It was concluded that 12 weeks of low- and high-intensity aerobic exercise can increase functional capacity and cardiovascular efficiency in elderly post-CABG patients; however, high-intensity exercise may produce greater improvements than low-intensity exercise.

Restricted access

Mark D. Haub, Jeffrey A. Potteiger, Dennis J. Jacobsen, Karen L. Nau, Lawrence A. Magee and Matthew J. Comeau

We investigated the effects of carbohydrate ingestion on glycogen replenishment and subsequent short duration, high intensity exercise performance. During Session 1, aerobic power was determined and each subject (N = 6) was familiarized with the 100-kJ cycling test (lOOKJ-Test). During the treatment sessions, the subjects performed a lOOKJ-Test (Ride-1), then consumed 0.7 g ⋅ kg body mass-1 of maltodextrin (CHO) or placebo (PLC), rested 60 min, and then performed a second lOOKJ-Test (Ride-2). Muscle tissue was collected before (Pre-1) and after Ride-1 (Post-1), and before (Pre-2) and after Ride-2 (Post-2), and analyzed for glycogen concentration. Both treatments yielded a significant increase in glycogen levels following the 60-min recovery, but there was no difference between treatments. Time to complete the lOOKJ-Test increased significantly for PLC, but not for CHO. These data indicate that the decrease in performance during Ride-2 in PLC was not the result of a difference in glycogen concentration.

Restricted access

Enda F. Whyte, Nicola Gibbons, Grainne Kerr and Kieran A. Moran

Context: Determination of return to play (RTP) after sport-related concussion (SRC) is critical given the potential consequences of premature RTP. Current RTP guidelines may not identify persistent exercise-induced neurocognitive deficits in asymptomatic athletes after SRC. Therefore, postexercise neurocognitive testing has been recommended to further inform RTP determination. To implement this recommendation, the effect of exercise on neurocognitive function in healthy athletes should be understood. Objective: To examine the acute effects of a high-intensity intermittent-exercise protocol (HIIP) on neurocognitive function assessed by the Symbol Digits Modality Test (SDMT) and Stroop Interference Test. Design: Cohort study. Setting: University laboratory. Participants 40 healthy male athletes (age 21.25 ± 1.29 y, education 16.95 ± 1.37 y). Intervention: Each participant completed the SDMT and Stroop Interference Test at baseline and after random allocation to a condition (HIIP vs control). A mixed between-within-subjects ANOVA assessed time- (pre- vs postcondition) -by-condition interaction effects. Main Outcome Measures: SDMT and Stroop Interference Test scores. Results: There was a significant time-by-condition interaction effect (P < .001, η 2 = .364) for the Stroop Interference Test scores, indicating that the HIIP group scored significantly lower (56.05 ± 9.34) postcondition than the control group (66.39 ± 19.6). There was no significant time-by-condition effect (P = .997, η 2 < .001) for the SDMT, indicating that there was no difference between SDMT scores for the HIIP and control groups (59.95 ± 10.7 vs 58.56 ± 14.02). Conclusions: In healthy athletes, the HIIP results in a reduction in neurocognitive function as assessed by the Stroop Interference Test, with no effect on function as assessed by the SDMT. Testing should also be considered after high-intensity exercise in determining RTP decisions for athletes after SRC in conjunction with the existing recommended RTP protocol. These results may provide an initial reference point for future research investigating the effects of an HIIP on the neurocognitive function of athletes recovering from SRC.

Restricted access

Nicolette C. Bishop, Michael Gleeson, Ceri W. Nicholas and Ajmol Ali

Ingesting carbohydrate (CHO) beverages during prolonged, continuous heavy exercise results in smaller changes in the plasma concentrations of several cytokines and attenuates a decline in neutrophil function. In contrast, ingesting CHO during prolonged intermittent exercise appears to have negligible influence on these responses, probably due to the overall moderate intensity of these intermittent exercise protocols. Therefore, we examined the effect of CHO ingestion on plasma interIeukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-stimuIated neutrophil degranulation responses to high-intensity intermittent running. Six trained male soccer players performed 2 exercise trials, 7 days apart, in a randomized, counterbalanced design. On each occasion, they completed six 15-min periods of intermittent running consisting of maximal sprinting interspersed with less intense periods of running and walking. Subjects consumed either CHO or artificially sweetened placebo(PLA) beverages immediately before and at 15-min intervals during the exercise. At 30 min post-exercise, CHO versus PLA was associated with a higher plasma glucose concentration (p< .01), a lower plasma cortisol and IL-6 concentration (p < .02), and fewer numbers of circulating neutrophils (p < .05). Following the exercise, LPS-stimulated elastase release per neutrophil fell 31 % below baseline values on the PLA trial (p = .06) compared with 11% on the CHO trial (p = .30). Plasma TNF-α concentration increased following the exercise (main effect of time, p < .001) but was not affected by CHO. These data indicate that CHO ingestion attenuates changes in plasma IL-6 concentration, neutrophil trafficking, and LPS-stimulated neutrophil degranulation in response to intermittent exercise that involves bouts of very high intensity exercise.

Restricted access

Deborah K. Fletcher and Nicolette C. Bishop

This study investigated the effect of a high and low dose of caffeine on antigen-stimulated natural killer (NK) cell (CD3CD56+) activation after prolonged, strenuous cycling, as assessed by the early-activation molecule CD69. In a randomized crossover design, 12 healthy male endurance-trained cyclists cycled for 90 min at 70% VO2peak 60 min after ingesting either 0 (PLA), 2 (2CAF), or 6 (6CAF) mg/kg body mass of caffeine. Whole blood was stimulated with Pediacel (5 in 1) vaccine. A high dose of caffeine (6CAF) increased the number of CD3CD56+ cells in the circulation immediately postexercise compared with PLA (p < .05). For both 2CAF and 6CAF, the geometric mean fluorescence intensity (GMFI) of CD69+ expression on unstimulated CD3CD56+ cells was significantly higher than with PLA (both p < .05). When cells were stimulated with antigen, the GMFI of CD69 expression remained significantly higher with 2CAF than with PLA 1 hr postexercise (p < .05). Although not achieving statistical significance, 6CAF also followed a similar trend when stimulated (p = .09). There were no differences in GMFI of CD69 expression between 2CAF and 6CAF. These results suggest that a high (6 mg/kg) dose of caffeine was associated with the recruitment of NK cells into the circulation and that both a high and low (2 mg/kg) dose of caffeine increased unstimulated and antigen-stimulated NK-cell activation 1 hr after high-intensity exercise. Furthermore, there does not appear to be a dose-dependent effect of caffeine on NK-cell activation 1 hr after prolonged intensive cycling.

Restricted access

Simon P. Roberts, Keith A. Stokes, Lee Weston and Grant Trewartha


This study presents an exercise protocol utilizing movement patterns specific to rugby union forward and assesses the reproducibility of scores from this test.


After habituation, eight participants (mean ± SD: age = 21 ± 3 y, height = 180 ± 4 cm, body mass = 83.9 ± 3.9 kg) performed the Bath University Rugby Shuttle Test (BURST) on two occasions, 1 wk apart. The protocol comprised 16 × 315-s cycles (4 × 21-min blocks) of 20-m shuttles of walking and cruising with 10-m jogs, with simulated scrummaging, rucking, or mauling exercises and standing rests. In the last minute of every 315-s cycle, a timed Performance Test was carried out, involving carrying a tackle bag and an agility sprint with a ball, followed by a 25-s recovery and a 15-m sprint.


Participants traveled 7078 m, spending 79.8 and 20.2% of time in low- and high-intensity activity, respectively. The coefficients of variation (CV) between trials 1 and 2 for mean time on the Performance Test (17.78 ± 0.71 vs 17.58 ± 0.79 s) and 15-m sprint (2.69 ± 0.15 vs 2.69 ± 0.15 s) were 1.3 and 0.9%, respectively. There was a CV of 2.2% between trials 1 and 2 for mean heart rate (160 ± 5 vs 158 ± 5 beats⋅min−1) and 14.4% for blood lactate (4.41 ± 1.22 vs 4.68 ± 1.68 mmol⋅L−1).


Results suggest that measures of rugby union-specifc high-intensity exercise performed during the BURST were reproducible over two trials in habituated participants.