Search Results

You are looking at 81 - 90 of 368 items for :

  • "high-intensity exercise" x
Clear All
Restricted access

Rachael C. Gliottoni and Robert W. Motl

This experiment examined the effect of a moderate dose of caffeine on perceptions of leg-muscle pain during a bout of high-intensity cycling exercise and the role of anxiety sensitivity in the hypoalgesic effect of caffeine on muscle pain during exercise. Sixteen college-age women ingested caffeine (5 mg/kg body weight) or a placebo and 1 hr later completed 30 min of cycling on an ergometer at 80% of peak aerobic capacity. The conditions were completed in a counterbalanced order, and perceptions of leg-muscle pain were recorded during the bouts of exercise. Caffeine resulted in a large reduction in leg-muscle pain-intensity ratings compared with placebo (d = −0.95), and the reduction in leg-muscle pain-intensity ratings was larger in those with lower anxiety-sensitivity scores than those with higher anxiety-sensitivity scores (d = −1.28 based on a difference in difference scores). The results support that caffeine ingestion has a large effect on reducing leg-muscle pain during high-intensity exercise, and the effect is moderated by anxiety sensitivity.

Restricted access

Alon Eliakim

The Pediatric Exercise Science Year That Was section aims to highlight the most important (to the author’s opinion) manuscripts that were published in 2016 in the field of endocrinology and pediatric exercise science. This year’s selection includes studies showing that 1) Induction of T4 to T3 conversion by type 2 deiodinase following aerobic exercise in skeletal muscles was associated with concomitant increase in peroxisome proliferatoractivated receptor-γ coactivator-1α, and mitochondrial oxidative capacity and therefore plays an important mechanistic role in the muscle adaptation to exercise training. 2) Hypothyroidism in fetal and early postnatal life was associated with impaired spatial learning and memory and with reduced hippocampal brain-derived neurotrophic factor in male and female rat pups. Forced (treadmill) and voluntary (wheel) exercise alleviated all these biochemical and neuro-cognitive deficits. 3) The relationship between different exercise intensities and carbohydrate requirements to maintain euglycemia at basal insulin levels among adolescent and young adults with Type 1 diabetes are nonlinear but rather inverted- U with no exogenous glucose required to maintain stable glucose level at high-intensity exercise (80%). The implication of these studies to the pediatric population, their importance and the new research avenues that were opened by these studies is emphasized.

Restricted access

Mitch D. VanBruggen, Anthony C. Hackney, Robert G. McMurray and Kristin S. Ondrak

Purpose:

The effect of exercise intensity on the tracking of serum and salivary cortisol responses was examined in 12 endurance-trained males (maximal oxygen uptake [VO2max] = 58.2 ± 6.4 mL/kg/min).

Methods:

Subjects rested for 30 min (control) and exercised on a cycle ergometer for 30 min at 40% (low), 60% (moderate), and 80% (high intensity) of VO2max on separate days. Serum and saliva samples were collected pretrial, immediately posttrial, and 30 min into the recovery period from each trial.

Results:

Cortisol responses increased significantly for both serum (40.4%; P = .001) and saliva (170.6%; P = .007) only in response to high-intensity exercise. Peak saliva cortisol occurred at 30 min of recovery, whereas peak serum was at the immediate posttrial sampling time point. The association between serum and saliva cortisol across all trials was examined using concordance correlation (R c) analysis, which accounts for repeated measures. The overall correlation between serum and saliva cortisol levels in all matched samples was significant (R c = 0.728; P = .001). The scatter plot revealed that salivary cortisol responses tracked closely to those of serum at lower concentrations, but not as well at higher concentrations.

Conclusions:

Findings suggest salivary measurements of cortisol closely mirror those in the serum and that peak salivary concentrations do not occur until at least 30 min into the recovery from intense exercise.

Restricted access

Eric T. Trexler and Abbie E. Smith-Ryan

Nutritional supplementation is a common practice among athletes, with creatine and caffeine among the most commonly used ergogenic aids. Hundreds of studies have investigated the ergogenic potential of creatine supplementation, with consistent improvements in strength and power reported for exercise bouts of short duration (≤30 s) and high intensity. Caffeine has been shown to improve endurance exercise performance, but results are mixed in the context of strength and sprint performance. Further, there is conflicting evidence from studies comparing the ergogenic effects of coffee and caffeine anhydrous supplementation. Previous research has identified independent mechanisms by which creatine and caffeine may improve strength and sprint performance, leading to the formulation of multi-ingredient supplements containing both ingredients. Although scarce, research has suggested that caffeine ingestion may blunt the ergogenic effect of creatine. While a pharmacokinetic interaction is unlikely, authors have suggested that this effect may be explained by opposing effects on muscle relaxation time or gastrointestinal side effects from simultaneous consumption. The current review aims to evaluate the ergogenic potential of creatine and caffeine in the context of high-intensity exercise. Research directly comparing coffee and caffeine anhydrous is discussed, along with previous studies evaluating the concurrent supplementation of creatine and caffeine.

Restricted access

Ben M. Krings, Timothy J. Peterson, Brandon D. Shepherd, Matthew J. McAllister and JohnEric W. Smith

The purpose of this investigation was to examine to the influence of carbohydrate ingestion (CHOI) and carbohydrate mouth rinse (CHOR) on acute repeat maximal sprint performance. Fourteen healthy males (age: 21.7 ± 1.8 years, mass: 82.3 ± 12.3 kg) completed a total of five 15-s maximal repeat sprints on a cycle ergometer against 0.075 kg ・ kg-1 body mass each separated by 4 min of active recovery. Subjects completed four experimental trials and were randomly assigned one of four treatments: (1) CHOI, (2) CHOR, (3) placebo mouth rinse (PLAR), (4) placebo ingestion (PLAI). Subjects rinsed or ingested six 50 mL 10% CHO solutions throughout each trial. Performance variables measured included rating of perceived exertion, peak heart rate, peak and mean power output, fatigue index, and total work. Significant treatment main effects were observed for mean power output (p = 0.026), total work (p = 0.020), fatigue index (p = 0.004), and heart rate (p = 0.013). Overall mean power output and total work were significantly greater with CHOI (659.3 ± 103.0 watts, 9849.8 ± 1598.8 joules) compared with CHOR (645.8 ± 99.7 watts, 9447.5 ± 1684.9 joules, p < .05). CHOI (15.3 ± 8.6 watts/s) significantly attenuated fatigue index compared with CHOR (17.7 ± 10.4 watts/s, p < .05). Based on our findings, CHOI was more likely to provide a beneficial performance effect compared with CHOR, PLAI, and PLAR. Athletes required to complete repeat bouts of high intensity exercise may benefit from CHOI.

Restricted access

Andrew M. Jones and Mark Burnley

The rate at which VO2 adjusts to the new energy demand following the onset of exercise strongly influences the magnitude of the “O2 defcit” incurred and thus the extent to which muscle and systemic homeostasis is perturbed. Moreover, during continuous high-intensity exercise, there is a progressive loss of muscle contractile efficiency, which is reflected in a “slow component” increase in VO2. The factors that dictate the characteristics of these fast and slow phases of the dynamic response of VO2 following a step change in energy turnover remain obscure. However, it is clear that these features of the VO2 kinetics have the potential to influence the rate of muscle fatigue development and, therefore, to affect sports performance. This commentary outlines the present state of knowledge on the characteristics of, and mechanistic bases to, the VO2 response to exercise of different intensities. Several interventions have been reported to speed the early VO2 kinetics and/or reduce the magnitude of the subsequent VO2 slow component, and the possibility that these might enhance exercise performance is discussed.

Restricted access

Charles S. Urwin, Dan B. Dwyer and Amelia J. Carr

Sodium citrate induces alkalosis and can provide a performance benefit in high-intensity exercise. Previous investigations have been inconsistent in the ingestion protocols used, in particular the dose and timing of ingestion before the onset of exercise. The primary aim of the current study was to quantify blood pH, blood bicarbonate concentration and gastrointestinal symptoms after ingestion of three doses of sodium citrate (500 mg⋅kg-1, 700 mg⋅kg-1 and 900 mg⋅kg-1). Thirteen participants completed four experimental sessions, each consisting of a different dose of sodium citrate or a taste-matched placebo solution. Blood pH and blood bicarbonate concentration were measured at 30-min intervals via analysis of capillary blood samples. Gastrointestinal symptoms were also monitored at 30-min intervals. Statistical significance was accepted at a level of p < .05. Both measures of alkalosis were significantly greater after ingestion of sodium citrate compared with placebo (p < .001). No significant differences in alkalosis were found between the three sodium citrate doses (p > .05). Peak alkalosis following sodium citrate ingestion ranged from 180 to 212 min after ingestion. Gastrointestinal symptoms were significantly higher after sodium citrate ingestion compared with placebo (p < .001), while the 900 mg.kg-1 dose elicited significantly greater gastrointestinal distress than 500 mg⋅kg-1 (p = .004). It is recommended that a dose of 500 mg⋅kg-1 of sodium citrate should be ingested at least 3 hr before exercise, to achieve peak alkalosis and to minimize gastrointestinal symptoms before and during exercise.

Restricted access

John Hough, Caroline Robertson and Michael Gleeson

Purpose:

This study examined the influence of 10 days of intensified training on salivary cortisol and testosterone responses to 30-min, high-intensity cycling (55/80) in a group of male elite triathletes.

Methods:

Seven elite male triathletes (age 19 ± 1 y, V̇O2max 67.6 ± 4.5 mL · kg–1 · min–1) completed the study. Swim distances increased by 45%. Running and cycling training hours increased by 25% and 229%, respectively. REST-Q questionnaires assessed mood status before, during, and after the training period. Unstimulated saliva samples were collected before, after, and 30 min after a continuous, high-intensity exercise test. Salivary cortisol and testosterone concentrations were assessed.

Results:

Compared with pretraining, blunted exercise-induced salivary testosterone responses to the posttraining 55/80 were found (P = .004). The absolute response of salivary testosterone concentrations to the 55/80 decreased pretraining to posttraining from 114% to 85%. No changes were found in exercise-induced salivary cortisol concentration responses to the 55/80. REST-Q scores indicated no changes in the participants’ psychological stress–recovery levels over the training camp.

Conclusions:

The blunted exercise-induced salivary testosterone is likely due to decreased testicular testosterone production and/or secretion, possibly attributable to hypothalamic dysfunction or reduced testicular blood flow. REST-Q scores suggest that the triathletes coped well with training-load elevations, which could account for the finding of no change in the exercise-induced salivary cortisol concentration. Overall, these findings suggest that the 55/80 can detect altered exercise-induced salivary testosterone concentrations in an elite athletic population due to increased training stress. However, this alteration occurs independently of a perceived elevation of training stress.

Restricted access

Nicolette C. Bishop, Michael Gleeson, Ceri W. Nicholas and Ajmol Ali

Ingesting carbohydrate (CHO) beverages during prolonged, continuous heavy exercise results in smaller changes in the plasma concentrations of several cytokines and attenuates a decline in neutrophil function. In contrast, ingesting CHO during prolonged intermittent exercise appears to have negligible influence on these responses, probably due to the overall moderate intensity of these intermittent exercise protocols. Therefore, we examined the effect of CHO ingestion on plasma interIeukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-stimuIated neutrophil degranulation responses to high-intensity intermittent running. Six trained male soccer players performed 2 exercise trials, 7 days apart, in a randomized, counterbalanced design. On each occasion, they completed six 15-min periods of intermittent running consisting of maximal sprinting interspersed with less intense periods of running and walking. Subjects consumed either CHO or artificially sweetened placebo(PLA) beverages immediately before and at 15-min intervals during the exercise. At 30 min post-exercise, CHO versus PLA was associated with a higher plasma glucose concentration (p< .01), a lower plasma cortisol and IL-6 concentration (p < .02), and fewer numbers of circulating neutrophils (p < .05). Following the exercise, LPS-stimulated elastase release per neutrophil fell 31 % below baseline values on the PLA trial (p = .06) compared with 11% on the CHO trial (p = .30). Plasma TNF-α concentration increased following the exercise (main effect of time, p < .001) but was not affected by CHO. These data indicate that CHO ingestion attenuates changes in plasma IL-6 concentration, neutrophil trafficking, and LPS-stimulated neutrophil degranulation in response to intermittent exercise that involves bouts of very high intensity exercise.

Restricted access

Enda F. Whyte, Nicola Gibbons, Grainne Kerr and Kieran A. Moran

Context: Determination of return to play (RTP) after sport-related concussion (SRC) is critical given the potential consequences of premature RTP. Current RTP guidelines may not identify persistent exercise-induced neurocognitive deficits in asymptomatic athletes after SRC. Therefore, postexercise neurocognitive testing has been recommended to further inform RTP determination. To implement this recommendation, the effect of exercise on neurocognitive function in healthy athletes should be understood. Objective: To examine the acute effects of a high-intensity intermittent-exercise protocol (HIIP) on neurocognitive function assessed by the Symbol Digits Modality Test (SDMT) and Stroop Interference Test. Design: Cohort study. Setting: University laboratory. Participants 40 healthy male athletes (age 21.25 ± 1.29 y, education 16.95 ± 1.37 y). Intervention: Each participant completed the SDMT and Stroop Interference Test at baseline and after random allocation to a condition (HIIP vs control). A mixed between-within-subjects ANOVA assessed time- (pre- vs postcondition) -by-condition interaction effects. Main Outcome Measures: SDMT and Stroop Interference Test scores. Results: There was a significant time-by-condition interaction effect (P < .001, η 2 = .364) for the Stroop Interference Test scores, indicating that the HIIP group scored significantly lower (56.05 ± 9.34) postcondition than the control group (66.39 ± 19.6). There was no significant time-by-condition effect (P = .997, η 2 < .001) for the SDMT, indicating that there was no difference between SDMT scores for the HIIP and control groups (59.95 ± 10.7 vs 58.56 ± 14.02). Conclusions: In healthy athletes, the HIIP results in a reduction in neurocognitive function as assessed by the Stroop Interference Test, with no effect on function as assessed by the SDMT. Testing should also be considered after high-intensity exercise in determining RTP decisions for athletes after SRC in conjunction with the existing recommended RTP protocol. These results may provide an initial reference point for future research investigating the effects of an HIIP on the neurocognitive function of athletes recovering from SRC.