Search Results

You are looking at 81 - 90 of 3,136 items for :

Clear All
Restricted access

G. Mikael Fogelholm, Hannu K. Näveri, Kai T.K. Kiilavuori and Matti H.A. HärkÖnen

Using a double-blind, crossover protocol, we studied the possible effects of a 4-day combined L-arginine, L-ornithine, and L-lysine supplementation (each 2 g/day, divided into two daily doses) on 24-hr level of serum human growth hormone (hGH) and insulin in 11 competitive weightlifters, ages 19 to 35 yrs. Three similar daily hGH peaks, seemingly preceded by a decrease in serum insulin concentration, were found during both amino acid and placebo supplementation. Supplementation did not affect the physiological variation of serum hGH concentration (treatment and treatment × time interaction: p=0.43–0.55). Analogously, serum insulin levels were not higher after amino acid supplementation. Therefore the ergogenic value of lowdose oral amino acid supplementation in increasing hGH or insulin secretion seems questionable.

Restricted access

Alessandra de Carvalho Bastone, Bruno de Souza Moreira, Renata Alvarenga Vieira, Renata Noce Kirkwood, João Marcos Domingues Dias and Rosângela Corrêa Dias

The purpose of this study was to assess the validity of the Human Activity Profile (HAP) by comparing scores with accelerometer data and by objectively testing its cutoff points. This study included 120 older women (age 60–90 years). Average daily time spent in sedentary, moderate, and hard activity; counts; number of steps; and energy expenditure were measured using an accelerometer. Spearman rank order correlations were used to evaluate the correlation between the HAP scores and accelerometer variables. Significant relationships were detected (rho = .47−.75, p < .001), indicating that the HAP estimates physical activity at a group level well; however, scatterplots showed individual errors. Receiver operating characteristic curves were constructed to determine HAP cutoff points on the basis of physical activity level recommendations, and the cutoff points found were similar to the original HAP cutoff points. The HAP is a useful indicator of physical activity levels in older women.

Restricted access

Jill L. McNitt-Gray

Restricted access

L.P. Kilduff, E. Georgiades, N. James, R.H. Minnion, M. Mitchell, D. Kingsmore, M. Hadjicharalambous and Y.P. Pitsiladis

The effects of creatine (Cr) supplementation on cardiovascular, metabolic, and thermoregulatory responses, and on the capacity of trained humans to perform prolonged exercise in the heat was examined. Endurance-trained males (n = 21) performed 2 constant-load exercise tests to exhaustion at 63 ± 5 % VO2max in the heat (ambient temperature: 30.3 ± 0.5 °C) before and after 7 d of Cr (20 g · d–1 ’ Cr + 140 g • d–1 glucose polymer) or placebo. Cr increased intraccl-lular water and reduced thermoregulatory and cardiovascular responses (e.g., heart rate, rectal temperature, sweat rate) but did not significantly increase time to exhaustion (47.0 ± 4.7 min vs. 49.7 ± 7.5 min, P = 0.095). Time to exhaustion was increased significantly in subjects whose estimated intramuscular Cr levels were substantially increased (“responders”: 47.3 ± 4.9 min vs. 51.7 ± 7.4 min, P = 0.031). Cr-induced hyperhydration can result in a more efficient thermoregulatory response during prolonged exercise in the heat.

Restricted access

Valter C. Barbosa Filho, Kelly Samara da Silva, Jorge Mota, Carmem Beck and Adair da Silva Lopes

Background:

Promoting physical activity (PA) in low- and middle-income countries is an important public health topic as well as a challenge for practice. This study aimed to assess the effect of a school-based intervention on different PA-related variables among students.

Methods:

This cluster-randomized-controlled trial included 548 students in the intervention group and 537 in the control group (11–18 years-old) from 6 schools in neighborhoods with low Human Development Index (0.170–0.491) in Fortaleza, Brazil. The intervention included strategies focused on training teachers, opportunities for PA in the school environment and health education. Variables measured at baseline and again at the 4-months follow-up included the weekly time in different types of moderate-to-vigorous PA (MVPA), preference for PA during leisure-time, PA behavioral change stage and active commuting to school. Generalized linear models and binary logistic regressions were used.

Results:

An intervention effect was found by increasing the weekly time in MVPA (effect size = 0.17), popular games (effect size = 0.35), and the amount of PA per week (effect size = 0.27) among students (all P < .05).

Conclusions:

The intervention was effective in promoting improvements in some PA outcomes, but the changes were not sufficient to increase the proportion of those meeting PA recommendations.

Restricted access

Hermann Zbinden-Foncea, Luc J. C. van Loon, Jean-Marc Raymackers, Marc Francaux and Louise Deldicque

Mitogen-activated protein kinase (MAPK) pathways are activated in skeletal muscle during endurance exercise, but the upstream molecular events are incompletely resolved. As an increase in plasma nonesterified fatty acids (NEFA) is a common feature of long-lasting exercise, the authors tested the hypothesis that NEFA contribute to the activation of MAPK during endurance exercise. Acipimox was used before and during endurance exercise to prevent the elevation of plasma NEFA levels in healthy subjects and patients with diabetes. In 2 separate studies, healthy subjects cycled for 2 hr and patients with diabetes for 1 hr at 50% Wmax. In control conditions, plasma NEFA concentrations increased from 0.35 to 0.90 mM during exercise in healthy subjects and from 0.55 to 0.70 mM in patients with diabetes (p < .05). Phosphorylation states of extracellularly regulated kinase 1 and 2 (ERK1/2), p38, and c-Jun NH2-terminal kinases (JNK) were significantly increased after exercise in the vastus lateralis in both groups. Acipimox blocked the increase in plasma NEFA concentrations and almost completely repressed any rise in ERK1/2 and p38 but not in JNK. In conclusion, the data support a role for plasma NEFA in the activation of p38 and ERK1/2 in skeletal-muscle tissue of healthy and diabetic subjects during endurance exercise. Further investigation will be required to determine the molecular link between NEFA and MAPK activation during exercise in human skeletal muscle.

Restricted access

Øyvind Sandbakk and Hans-Christer Holmberg

Cross-country (XC) skiing is one of the most demanding of endurance sports, involving protracted competitions on varying terrain employing a variety of skiing techniques that require upper- and/or lower-body work to different extents. Through more effective training and extensive improvements in equipment and track preparation, the speed of cross-country ski races has increased more than that of any other winter Olympic sport, and, in addition, new types of racing events have been introduced. To a certain extent this has altered the optimal physiological capacity required to win, and the training routines of successful skiers have evolved accordingly. The long-standing tradition of researchers working closely with XC-ski coaches and athletes to monitor progress, improve training, and refine skiing techniques has provided unique physiological insights revealing how these athletes are approaching the upper limits of human endurance. This review summarizes current scientific knowledge concerning the demands involved in elite XC skiing, as well as the physiological capacity and training routines of the best athletes.

Restricted access

Sybert Stroeve

Using a model for the neuromuscular control of human arm movements, the possible roles of different proprioceptive signals are analyzed. The control model is represented by a neural network and includes both feedback and feedforward control modes. After a learning process, the controller regulates a wide range of arm movements. Evaluation of the roles of different afferent signals shows that sensed muscle forces are important to achieve accurate control of fast movements. For a moderately high loop delay (50 ms), velocity feedback is not essential, but for small loop delays (0 and 25 ms) an increased performance is attained by feedback of velocity. Position sense is essential to prevent steady-state errors. The arm impedance is affected considerably by the delay in the control loop and by the configuration of the motor control system. The achieved relation between muscle length and force is similar to the invariant characteristics laying at the basis of the equilibrium-point (EP) hypothesis. However, control of fast movements on the basis of EP alone is not feasible, but requires feedforward control. During training in a velocity-dependent force field, the impedance of the arm increases at first, due to enhanced cocontraction. Subsequently, both impedance and movement errors decrease, indicating a successful representation of the changed inverse dynamics.

Restricted access

Darren G. Burke, Philip D. Chilibeck, Gianni Parise, Mark A. Tarnopolsky and Darren G. Candow

α-lipoic acid has been found to enhance glucose uptake into skeletal muscle in animal models. Studies have also found that the co-ingestion of carbohydrate along with creatine increases muscle creatine uptake by a process related to insulin-stimulated glucose disposal. The purpose of this study was to determine the effect of α-lipoic acid on human skeletal muscle creatine uptake by directly measuring intramuscular concentrations of creatine, phosphocreatine, and ad-enosine triphosphate when creatine monohydrate was co-ingested with α-lipoic acid. Muscle biopsies were acquired from the vastus lateralis m. of 16 male subjects (18–32 y) before and after the experimental intervention. After the initial biopsy, subjects ingested 20 g · d−1 of creatine monohydrate, 20 g · d−1 of creatine monohydrate + 100 g · d−1 of sucrose, or 20 g · d−1 of creatine monohydrate + 100 g · d−1 of sucrose + 1000 mg · d−1 of α-lipoic acid for 5 days. Subjects refrained from exercise and consumed the same balanced diet for 7 days. Body weight increased by 2.1% following the nutritional intervention, with no differences between the groups. There was a significant increase in total creatine concentration following creatine supplementation, with the group ingesting α-lipoic acid showing a significantly greater increase (p < .05) in phosphocreatine (87.6 → 106.2 mmol · kg−1 dry mass [dm]) and total creatine (137.8 → 156.8 mmol · kg−1 dm). These findings indicate that co-ingestion of α-lipoic acid with creatine and a small amount of sucrose can enhance muscle total creatine content as compared to the ingestion of creatine and sucrose or creatine alone.

Restricted access

Tetsuro Muraoka, Tadashi Muramatsu, Hiroaki Kanehisa and Tetsuo Fukunaga

The aim of the present study was to determine the transverse strain of aponeuroses in human tibialis anterior muscle (TA) in vivo and to clarify the influence of muscle fiber length and state of contraction on the transverse strain. Sagittal and horizontal images of TA were taken in seven men and one woman at ankle angles of –20° (dorsiflexed direction), 0° (neutral anatomic position), and 45° (plantar-flexed direction) both at rest and during submaximal dorsiflexion contraction (20 Nm: 0° and 45°; 10 Nm: –20°) using B-mode ultrasonography. The width of the TA central aponeurosis changed from 21.7 ± 1.0 (mean ± SE) to 25.5 ± 1.1 mm when muscle fiber length changed from 91.0 ± 3.5 (45° in the resting state) to 55.1 ± 3.2 mm (–20° in the active state). The transverse strain of the TA central aponeurosis, which was change in relative width compared with the width at 45° in the resting state, increased when the muscle fiber length decreased. The transverse strain of the TA central aponeurosis was directly proportional to the muscle fiber length to the –1/2 power in both resting and active states (R = 0.81 and 0.74, p < 0.05 for both), and there was no significant difference (p < 0.05) between correlation coefficients and regression slopes for resting and active states. The findings suggest that the transverse strain of the TA central aponeurosis was closely related to muscle fiber length and that the transverse strain of the aponeurosis should be considered for accurate 3-D muscle modeling.