Search Results

You are looking at 81 - 90 of 442 items for :

  • "physiologic responses" x
Clear All
Restricted access

William M. Bertucci, Andrew C. Betik, Sebastien Duc and Frederic Grappe

This study was designed to examine the biomechanical and physiological responses between cycling on the Axiom stationary ergometer (Axiom, Elite, Fontaniva, Italy) vs. field conditions for both uphill and level ground cycling. Nine cyclists performed cycling bouts in the laboratory on an Axiom stationary ergometer and on their personal road bikes in actual road cycling conditions in the field with three pedaling cadences during uphill and level cycling. Gross efficiency and cycling economy were lower (–10%) for the Axiom stationary ergometer compared with the field. The preferred pedaling cadence was higher for the Axiom stationary ergometer conditions compared with the field conditions only for uphill cycling. Our data suggests that simulated cycling using the Axiom stationary ergometer differs from actual cycling in the field. These results should be taken into account notably for improving the precision of the model of cycling performance, and when it is necessary to compare two cycling test conditions (field/laboratory, using different ergometers).

Restricted access

Peter J. Lang

Emotions are organized around 2 basic motivational systems, appetitive and defensive, that evolved from primitive neural circuits in the mammalian brain. The appetitive system is keyed for approach behavior, founded on the preservative, sexual, and nurturant reflexes that underlie pleasant affects; the defense system is keyed for withdrawal, founded on protective and escape reflexes that underlie unpleasant affects. Both systems control attentional processing: Distal engagement by motive-relevant cues prompts immobility and orienting. With greater cue proximity (e.g., predator or prey imminence), neural motor centers supercede, determining overt defensive or consummatory action. In humans, these systems determine affective expression, evaluation behavior, and physiological responses that can be related to specific functional changes in the brain. This theoretical approach is illustrated with psychophysiological and brain imagery studies in which human subjects respond to emotional picture stimuli.

Restricted access

Michael Wilkinson, Damon Leedale-Brown and Edward M. Winter

Purpose:

We examined the reproducibility of performance and physiological responses on a squash-specific incremental test.

Methods:

Eight trained squash players habituated to procedures with two prior visits performed an incremental squash test to volitional exhaustion on two occasions 7 days apart. Breath-by-breath oxygen uptake ( Vo2) and heart rate were determined continuously using a portable telemetric system. Blood lactate concentration at the end of 4-min stages was assessed to determine lactate threshold. Once threshold was determined, test speed was increased every minute until volitional exhaustion for assessment of maximal oxygen uptake (Vo2max), maximum heart rate (HRmax), and performance time. Economy was taken as the 60-s mean of Vo2 in the final minute of the fourth stage (below lactate threshold for all participants). Typical error of measurement (TEM) with associated 90% confidence intervals, limits of agreement, paired sample t tests, and least products regression were used to assess the reproducibility of scores.

Results:

Performance time (TEM 27 s, 4%, 90% CI 19 to 49 s) Vo2max (TEM 2.4 mL·kg−1·min−1, 4.7%, 90% CI 1.7 to 4.3 mL·kg−1·min−1), maximum heart rate (TEM 2 beats·min−1, 1.3%, 90% CI 2 to 4 beats·min−1), and economy (TEM 1.6 mL·kg−1·min−1, 4.1%, 90% CI 1.1 to 2.8 mL·kg−1·min−1) were reproducible.

Conclusions:

The results suggest that endurance performance and physiological responses to a squash-specific fitness test are reproducible.

Restricted access

Charles J. Hardy, Evelyn G. Hall and Perry H. Prestholdt

Two experiments are reported that investigate the mediational role of social influence in the self-perception of exertion. In Experiment 1, subjects performed three 15-min trials on a cycle ergometer at 25%, 50%, and 75% VO2max, both in the presence of another performer (a coactor) and alone. The results indicated that subjects reported lower RPEs when performing with another, particularly at the moderate (50%) intensity. In Experiment 2, subjects performed one 15-min trial at 50% of VO2max, both alone and in the presence of another performer (coactor) exhibiting nonverbal "cues" that the work was either extremely easy or extremely difficult. The results indicated that subjects exposed to the low-intensity cue information reported lower RPEs than when performing alone. Mo significant differences were noted for those subjects exposed to the high-intensity cue information. These findings are discussed in terms of a self-presentational analysis. That such effects were evidenced without physiological responses (VO2, VE, HR) accompanying them supports the notion that psychological variables can play a significant role in the self-perception of exertion. These results, however, are limited to untrained individuals exercising at moderate intensities.

Restricted access

Amber Dallman, Eydie Abercrombie, Rebecca Drewette-Card, Maya Mohan, Michael Ray and Brian Ritacco

Background:

Physical activity has emerged as a vital area of public health. This emerging area of public health practice has created a need to develop practitioners who can address physical activity promotion using population-based approaches. Variations in physical activity practitioners' educations and backgrounds warranted the creation of minimal standards to establish the competencies needed to address physical activity as a public health priority.

Methods:

The content knowledge of physical activity practitioners tends to fall into 2 separate areas—population-based community health education and individually focused exercise physiology. Competencies reflect the importance of a comprehensive approach to physical activity promotion, including areas of community health while also understanding the physiologic responses occurring at the individual level.

Results:

Competencies are organized under the Center for Disease Control and Prevention's 5 benchmarks for physical activity and public health practice.

Conclusions:

The greatest impact on physical activity levels may be realized from a well-trained workforce of practitioners. Utilization of the competencies will enable the physical activity practitioner to provide technical assistance and leadership to promote, implement, and oversee evaluation of physical activity interventions.

Restricted access

Matthew S. Hickey, David L. Costill and Scott W. Trappe

This study investigated the influence of drink carbonation and carbohydrate content on ad libitum drinking behavior and body fluid and electrolyte responses during prolonged exercise in the heat. Eight competitive male runners completed three 2-hr treadmill runs at 60% VO2max in an environmental chamber maintained at 30 C° and 40% RH. Three test drinks were used: 8% carbohydrate, low carbonation (8%-C); 8% carbohydrate, noncarbonated (8%-NC), and water (0%-NC). Blood samples were taken preexercise (0), at 60 and 120 min of exercise, and at 60 min of recovery (+60 min). The data suggest that while reports of heartburn tend to be higher on 8% carbohydrate drinks than on 0%-NC, this does not appear to be a function of drink carbonation. Similarly, the increased frequency of heartbum did not significantly reduce fluid consumption either during exercise or during a 60-min recovery period. Importantly, no differences were observed between fluid and electrolyte, or thermoregulatory responses to the three sport drinks. Thus, consumption of low-carbonation beverages does not appear to significantly influence drinking behavior or the related physiological responses during prolonged exercise in the heat.

Restricted access

Melitta A. McNarry, Joanne R. Welsman and Andrew M. Jones

The influence of training status on pulmonary VO2 recovery kinetics, and its interaction with maturity, has not been investigated in young girls. Sixteen prepubertal (Pre: trained (T, 11.4 ± 0.7 years), 8 untrained (UT, 11.5 ± 0.6 years)) and 8 pubertal (Pub: 8T, 14.2 ± 0.7 years; 8 UT, 14.5 ± 1.3 years) girls completed repeat transitions from heavy intensity exercise to a baseline of unloaded exercise, on both an upper and lower body ergometer. The VO2 recovery time constant was significantly shorter in the trained prepubertal and pubertal girls during both cycle (Pre: T, 26 ± 4 vs. UT, 32 ± 6; Pub: T, 28 ± 2 vs. UT, 35 ± 7 s; both p < .05) and upper body exercise (Pre: T, 26 ± 4 vs. UT, 35 ± 6; Pub: T, 30 ± 4 vs. UT, 42 ± 3 s; both p < .05). No interaction was evident between training status and maturity. These results demonstrate the sensitivity of VO2 recovery kinetics to training in young girls and challenge the notion of a “maturational threshold” in the influence of training status on the physiological responses to exercise and recovery.

Restricted access

Andrew C. Morris, Ira Jacobs, Tom M. McLellan, Abbey Klugerman, Lawrence C.H. Wang and Jiri Zamecnik

The purpose of this study was to examine the effects of ginseng extract ingestion on physiological responses to intense exercise. Subjects performed a control ride (CN) on a cycle ergometer, followed by placebo (PL) and ginseng (GS) treatments. Ginseng was ingested as 8 or 16 mg/kg body weight daily for 7 days prior to trial GS. Venous blood was sampled for FFA, lactate, and glucose analyses. Due to similar findings for both dose groups, the subjects were considered as one group. Lactate, FFA, VO2, VE, and RPE increased significantly from 10 through 40 min. RER increased during the first 10 min of exercise and then remained stable, with no intertrial differences. Glucose did not vary significantly from 0 to 40 min or among treatments. RPE was significantly greater and time to exhaustion was significantly less during trial CN than PL or GS, while PL and GS trials were similar. The data indicated that with 1 week of pretreatment there is no ergogenic effect of ingesting the ginseng saponin extract.

Restricted access

Gi Broman, Miguel Quintana, Margareta Engardt, Lennart Gullstrand, Eva Jansson and Lennart Kaijser

The aim of the study was to examine submaximal and maximal physiological responses and perceived exertion during deep-water running with a vest compared with the responses during treadmill running in healthy elderly women. Eleven healthy women 70 ± 2 years old participated. On two different occasions they performed a graded maximal exercise test on a treadmill on land and a graded maximal exercise test in water wearing a vest. At maximal work the oxygen uptake was 29% lower (p < .05), the heart rate was 8% lower (p < .05), and the ventilation was 16% lower (p < .05) during deep-water running than during treadmill running. During submaximal absolute work the heart rate was higher during deep-water running than during treadmill running for the elderly women. The participants had lower maximal oxygen uptake, heart rate, ventilation, respiratory-exchange ratio, and rate of perceived exertion during maximal deep-water running with a vest than during maximal treadmill running. These responses were, however, higher during submaximal deep-water running than during treadmill running.

Restricted access

Brian Klucinec, Craig Denegar and Rizwan Mahmood

During the administration of therapeutic ultrasound, the amount of pressure at the sound head-tissue interface may affect the physiological response to and the outcome of treatment. Speed of sonification; size of the treatment area; frequency, intensity, and type of wave; and coupling media are important parameters in providing the patient with an appropriate ultrasound treatment. Pressure variations affect ultrasound transmissivity, yet pressure differences have been virtually unexplored. The purpose of this study was to assess the effects of sound head pressure on acoustic transmissivity. Three trials were conducted whereby pig tissue was subjected to increased sound head pressures using manufactured weights. The weights were added in 100 g increments, starting with 200 g and finishing with 1,400 g. Increased pressure on the transmitting transducer did affect acoustic transmissivity; acoustic energy transmission was increased from 200 g (0.44 lb) up to and optimally at 600 g (1.32 lb). However, there was decreased transmissivity from 700 to 1, 400 g (1.54 to 3.00 lb).