Search Results

You are looking at 81 - 90 of 436 items for :

  • "physiological responses" x
Clear All
Restricted access

Peter J. Lang

Emotions are organized around 2 basic motivational systems, appetitive and defensive, that evolved from primitive neural circuits in the mammalian brain. The appetitive system is keyed for approach behavior, founded on the preservative, sexual, and nurturant reflexes that underlie pleasant affects; the defense system is keyed for withdrawal, founded on protective and escape reflexes that underlie unpleasant affects. Both systems control attentional processing: Distal engagement by motive-relevant cues prompts immobility and orienting. With greater cue proximity (e.g., predator or prey imminence), neural motor centers supercede, determining overt defensive or consummatory action. In humans, these systems determine affective expression, evaluation behavior, and physiological responses that can be related to specific functional changes in the brain. This theoretical approach is illustrated with psychophysiological and brain imagery studies in which human subjects respond to emotional picture stimuli.

Restricted access

Thomas Rowland

Interest in the physiological responses to exercise unique to the pediatric age group has grown exponentially over the past 50 years. A number of issues surrounding children’s exercise have been particularly responsible for this trend, particularly a) recognition of the health benefits of exercise in youth, b) the growing involvement of young persons in highly intense levels of sports play, and c) the role that exercise may play in the diagnosis and management of children with chronic disease. As a consequence, current research to date has provided a comprehensive picture of the features specific to children’s response to exercise. Future challenges facing the field of pediatric exercise science involve translating this information into practical guidelines which can be applied to the realms of clinical medical practice, preventive health initiatives, and athletic training regimens which are appropriate for this age group.

Restricted access

Richard B. Kreider

The physiological effects of endurance exercise have been a primary area of research in exercise science for many years. This research has led not only to a greater understanding of human physiology but also the limits of human performance. This is especially true regarding the effects of endurance exercise on energy metabolism and nutrition. However, as science has attempted to understand the physiological and nutritional demands of endurance exercise lasting 1 to 3 hours, an increasing number of athletes have begun participating in ultraendurance events lasting 4 to 24 hours. Consequently some research groups are now investigating the physiological responses to ultraendurance training and performance. This paper reviews the literature on ultraendurance performance and discusses nutritional factors that may affect bioenergetic, thermoregulatory, endocrinological, and hematological responses to ultraendurance performance.

Restricted access

Kamuran Yerlikaya Balyan, Serdar Tok, Arkun Tatar, Erdal Binboga and Melih Balyan

The present study examined the association between personality, competitive anxiety, somatic anxiety and physiological arousal in athletes with high and low anxiety levels. Anxiety was manipulated by means of an incentive. Fifty male participants, first, completed the Five Factor Personality Inventory and their resting electro dermal activity (EDA) was recorded. In the second stage, participants were randomly assigned to high or low anxiety groups. Individual EDAs were recorded again to determine precompetition physiological arousal. Participants also completed the Competitive State Anxiety Inventory-2 (CSAI-2) and played a computer-simulated soccer match. Results showed that neuroticism was related to both CSAI-2 components and physiological arousal only in the group receiving the incentive. Winners had higher levels of cognitive anxiety and lower levels of physiological arousal than losers. On the basis of these findings, we concluded that an athlete’s neurotic personality may influence his cognitive and physiological responses in a competition.

Restricted access

Sarah E. Williams, Jennifer Cumming and George M. Balanos

The present study investigated whether imagery could manipulate athletes’ appraisal of stress-evoking situations (i.e., challenge or threat) and whether psychological and cardiovascular responses and interpretations varied according to cognitive appraisal of three imagery scripts: challenge, neutral, and threat. Twenty athletes (M age = 20.85; SD = 1.76; 10 female, 10 male) imaged each script while heart rate, stroke volume, and cardiac output were obtained using Doppler echocardiography. State anxiety and self-confidence were assessed following each script using the Immediate Anxiety Measures Scale. During the imagery, a significant increase in heart rate, stroke volume, and cardiac output occurred for the challenge and threat scripts (p < .05). Although there were no differences in physiological response intensities for both stress-evoking scripts, these responses, along with anxiety symptoms, were interpreted as facilitative during the challenge script and debilitative during the threat script. Results support using imagery to facilitate adaptive stress appraisal.

Restricted access

Lawrence E. Armstrong, Roger W. Hubbard, E. Wayne Askew, Jane P. De Luca, Catherine O'Brien, Angela Pasqualicchio and Ralph P. Francesconi

This investigation examined whether low sodium (Na+) (LNA; 68 mEq Na+·d-1) or moderate Na+ (MNA; 137 mEq Na+.d-1) intake allowed humans to maintain health, exercise, and physiologic function during 10 days of prolonged exercise-heat acclimation (HA). Seventeen volunteers, ages 19 to 21, consumed either LNA (n=8) or MNA (n=9) during HA (41°C, 21% RH; treadmill walking for 30 min.h-1, 8 h·d-1 at 5.6 kmh-l, 5% grade), which resulted in significantly reduced heart rate, rectal temperature, and urine Na+ for both groups. There were few between-diet differences in any variables measured. Mean plasma volume in LNA expanded significantly less than in MNA by Days 11 and 15, but reached the MNA level on Day 17 (+12.3 vs. +12.4%). The absence of heat illness, the presence of normal physiologic responses, and the total distance walked indicated successful and similar HA with both levels of dietary Na+.

Restricted access

Michael Wilkinson, Damon Leedale-Brown and Edward M. Winter

Purpose:

We examined the reproducibility of performance and physiological responses on a squash-specific incremental test.

Methods:

Eight trained squash players habituated to procedures with two prior visits performed an incremental squash test to volitional exhaustion on two occasions 7 days apart. Breath-by-breath oxygen uptake ( Vo2) and heart rate were determined continuously using a portable telemetric system. Blood lactate concentration at the end of 4-min stages was assessed to determine lactate threshold. Once threshold was determined, test speed was increased every minute until volitional exhaustion for assessment of maximal oxygen uptake (Vo2max), maximum heart rate (HRmax), and performance time. Economy was taken as the 60-s mean of Vo2 in the final minute of the fourth stage (below lactate threshold for all participants). Typical error of measurement (TEM) with associated 90% confidence intervals, limits of agreement, paired sample t tests, and least products regression were used to assess the reproducibility of scores.

Results:

Performance time (TEM 27 s, 4%, 90% CI 19 to 49 s) Vo2max (TEM 2.4 mL·kg−1·min−1, 4.7%, 90% CI 1.7 to 4.3 mL·kg−1·min−1), maximum heart rate (TEM 2 beats·min−1, 1.3%, 90% CI 2 to 4 beats·min−1), and economy (TEM 1.6 mL·kg−1·min−1, 4.1%, 90% CI 1.1 to 2.8 mL·kg−1·min−1) were reproducible.

Conclusions:

The results suggest that endurance performance and physiological responses to a squash-specific fitness test are reproducible.

Restricted access

Philip R. Hayes, Kjell van Paridon, Duncan N. French, Kevin Thomas and Dan A. Gordon

Purpose:

The aim of this study was to develop a laboratory-based treadmill simulation of the on-course physiological demands of an 18-hole round of golf and to identify the underlying physiological responses.

Methods:

Eight amateur golfers completed a round of golf during which heart rate (HR), steps taken, and global positioning system (GPS) data were assessed. The GPS data were used to create a simulated discontinuous round on a treadmill. Steps taken and HR were recorded during the simulated round.

Results:

During the on-course round, players covered a mean (±SD) of 8,251 ± 450 m, taking 12,766 ± 1,530 steps. The mean exercise intensity during the on-course round was 31.4 ± 9.3% of age-predicted heart rate reserve (%HRR) or 55.6 ± 4.4% of age-predicted maximum HR (%HRmax). There were no significant differences between the simulated round and the on-course round for %HRR (P = .537) or %HR max (P = .561) over the entire round or for each individual hole. Furthermore, there were no significant differences between the two rounds for steps taken. Typical error values for steps taken, HR, %HRmax, and %HRR were 1,083 steps, ±7.6 b·min-1, ±4.5%, and ±8.1%, respectively.

Conclusion:

Overall, the simulated round of golf successfully recreated the demands of an on-course round. This simulated round could be used as a research tool to assess the extent of fatigue during a round of golf or the impact of various interventions on golfers.

Restricted access

Charles J. Hardy, Evelyn G. Hall and Perry H. Prestholdt

Two experiments are reported that investigate the mediational role of social influence in the self-perception of exertion. In Experiment 1, subjects performed three 15-min trials on a cycle ergometer at 25%, 50%, and 75% VO2max, both in the presence of another performer (a coactor) and alone. The results indicated that subjects reported lower RPEs when performing with another, particularly at the moderate (50%) intensity. In Experiment 2, subjects performed one 15-min trial at 50% of VO2max, both alone and in the presence of another performer (coactor) exhibiting nonverbal "cues" that the work was either extremely easy or extremely difficult. The results indicated that subjects exposed to the low-intensity cue information reported lower RPEs than when performing alone. Mo significant differences were noted for those subjects exposed to the high-intensity cue information. These findings are discussed in terms of a self-presentational analysis. That such effects were evidenced without physiological responses (VO2, VE, HR) accompanying them supports the notion that psychological variables can play a significant role in the self-perception of exertion. These results, however, are limited to untrained individuals exercising at moderate intensities.

Restricted access

Amber Dallman, Eydie Abercrombie, Rebecca Drewette-Card, Maya Mohan, Michael Ray and Brian Ritacco

Background:

Physical activity has emerged as a vital area of public health. This emerging area of public health practice has created a need to develop practitioners who can address physical activity promotion using population-based approaches. Variations in physical activity practitioners' educations and backgrounds warranted the creation of minimal standards to establish the competencies needed to address physical activity as a public health priority.

Methods:

The content knowledge of physical activity practitioners tends to fall into 2 separate areas—population-based community health education and individually focused exercise physiology. Competencies reflect the importance of a comprehensive approach to physical activity promotion, including areas of community health while also understanding the physiologic responses occurring at the individual level.

Results:

Competencies are organized under the Center for Disease Control and Prevention's 5 benchmarks for physical activity and public health practice.

Conclusions:

The greatest impact on physical activity levels may be realized from a well-trained workforce of practitioners. Utilization of the competencies will enable the physical activity practitioner to provide technical assistance and leadership to promote, implement, and oversee evaluation of physical activity interventions.