Search Results

You are looking at 81 - 90 of 487 items for :

  • "physiological responses" x
Clear All
Restricted access

William M. Bertucci, Andrew C. Betik, Sebastien Duc and Frederic Grappe

This study was designed to examine the biomechanical and physiological responses between cycling on the Axiom stationary ergometer (Axiom, Elite, Fontaniva, Italy) vs. field conditions for both uphill and level ground cycling. Nine cyclists performed cycling bouts in the laboratory on an Axiom stationary ergometer and on their personal road bikes in actual road cycling conditions in the field with three pedaling cadences during uphill and level cycling. Gross efficiency and cycling economy were lower (–10%) for the Axiom stationary ergometer compared with the field. The preferred pedaling cadence was higher for the Axiom stationary ergometer conditions compared with the field conditions only for uphill cycling. Our data suggests that simulated cycling using the Axiom stationary ergometer differs from actual cycling in the field. These results should be taken into account notably for improving the precision of the model of cycling performance, and when it is necessary to compare two cycling test conditions (field/laboratory, using different ergometers).

Restricted access

Sarah E. Williams, Jennifer Cumming and George M. Balanos

The present study investigated whether imagery could manipulate athletes’ appraisal of stress-evoking situations (i.e., challenge or threat) and whether psychological and cardiovascular responses and interpretations varied according to cognitive appraisal of three imagery scripts: challenge, neutral, and threat. Twenty athletes (M age = 20.85; SD = 1.76; 10 female, 10 male) imaged each script while heart rate, stroke volume, and cardiac output were obtained using Doppler echocardiography. State anxiety and self-confidence were assessed following each script using the Immediate Anxiety Measures Scale. During the imagery, a significant increase in heart rate, stroke volume, and cardiac output occurred for the challenge and threat scripts (p < .05). Although there were no differences in physiological response intensities for both stress-evoking scripts, these responses, along with anxiety symptoms, were interpreted as facilitative during the challenge script and debilitative during the threat script. Results support using imagery to facilitate adaptive stress appraisal.

Restricted access

Richard B. Kreider

The physiological effects of endurance exercise have been a primary area of research in exercise science for many years. This research has led not only to a greater understanding of human physiology but also the limits of human performance. This is especially true regarding the effects of endurance exercise on energy metabolism and nutrition. However, as science has attempted to understand the physiological and nutritional demands of endurance exercise lasting 1 to 3 hours, an increasing number of athletes have begun participating in ultraendurance events lasting 4 to 24 hours. Consequently some research groups are now investigating the physiological responses to ultraendurance training and performance. This paper reviews the literature on ultraendurance performance and discusses nutritional factors that may affect bioenergetic, thermoregulatory, endocrinological, and hematological responses to ultraendurance performance.

Restricted access

Kamuran Yerlikaya Balyan, Serdar Tok, Arkun Tatar, Erdal Binboga and Melih Balyan

The present study examined the association between personality, competitive anxiety, somatic anxiety and physiological arousal in athletes with high and low anxiety levels. Anxiety was manipulated by means of an incentive. Fifty male participants, first, completed the Five Factor Personality Inventory and their resting electro dermal activity (EDA) was recorded. In the second stage, participants were randomly assigned to high or low anxiety groups. Individual EDAs were recorded again to determine precompetition physiological arousal. Participants also completed the Competitive State Anxiety Inventory-2 (CSAI-2) and played a computer-simulated soccer match. Results showed that neuroticism was related to both CSAI-2 components and physiological arousal only in the group receiving the incentive. Winners had higher levels of cognitive anxiety and lower levels of physiological arousal than losers. On the basis of these findings, we concluded that an athlete’s neurotic personality may influence his cognitive and physiological responses in a competition.

Restricted access

Thomas W. Rowland

Performance in all forms of motor activity related to sport performance improves progressively during the course of the childhood years as a consequence of normal growth and development. Whether (a) sport training can accelerate and ultimately enhance this biological development and (b) the existence of certain ages when training might prove to be more effective in improving performance, particularly early in childhood, remains uncertain. Physiological adaptations to endurance training in prepubertal children (improvements in maximal oxygen uptake) are dampened compared with adults, but enhancements of strength following resistance training are equally effective at all ages. The extent that intensive training regimens characteristic of early sport specialization in children can trigger physiological and performance adaptations may therefore depend on the form of exercise involved. Clearly, additional research is needed to enhance the understanding of the physiological responses to intensive sport training in prepubertal individuals.

Restricted access

Thomas Rowland

Interest in the physiological responses to exercise unique to the pediatric age group has grown exponentially over the past 50 years. A number of issues surrounding children’s exercise have been particularly responsible for this trend, particularly a) recognition of the health benefits of exercise in youth, b) the growing involvement of young persons in highly intense levels of sports play, and c) the role that exercise may play in the diagnosis and management of children with chronic disease. As a consequence, current research to date has provided a comprehensive picture of the features specific to children’s response to exercise. Future challenges facing the field of pediatric exercise science involve translating this information into practical guidelines which can be applied to the realms of clinical medical practice, preventive health initiatives, and athletic training regimens which are appropriate for this age group.

Restricted access

Peter J. Lang

Emotions are organized around 2 basic motivational systems, appetitive and defensive, that evolved from primitive neural circuits in the mammalian brain. The appetitive system is keyed for approach behavior, founded on the preservative, sexual, and nurturant reflexes that underlie pleasant affects; the defense system is keyed for withdrawal, founded on protective and escape reflexes that underlie unpleasant affects. Both systems control attentional processing: Distal engagement by motive-relevant cues prompts immobility and orienting. With greater cue proximity (e.g., predator or prey imminence), neural motor centers supercede, determining overt defensive or consummatory action. In humans, these systems determine affective expression, evaluation behavior, and physiological responses that can be related to specific functional changes in the brain. This theoretical approach is illustrated with psychophysiological and brain imagery studies in which human subjects respond to emotional picture stimuli.

Restricted access

Michael Wilkinson, Damon Leedale-Brown and Edward M. Winter

Purpose:

We examined the reproducibility of performance and physiological responses on a squash-specific incremental test.

Methods:

Eight trained squash players habituated to procedures with two prior visits performed an incremental squash test to volitional exhaustion on two occasions 7 days apart. Breath-by-breath oxygen uptake ( Vo2) and heart rate were determined continuously using a portable telemetric system. Blood lactate concentration at the end of 4-min stages was assessed to determine lactate threshold. Once threshold was determined, test speed was increased every minute until volitional exhaustion for assessment of maximal oxygen uptake (Vo2max), maximum heart rate (HRmax), and performance time. Economy was taken as the 60-s mean of Vo2 in the final minute of the fourth stage (below lactate threshold for all participants). Typical error of measurement (TEM) with associated 90% confidence intervals, limits of agreement, paired sample t tests, and least products regression were used to assess the reproducibility of scores.

Results:

Performance time (TEM 27 s, 4%, 90% CI 19 to 49 s) Vo2max (TEM 2.4 mL·kg−1·min−1, 4.7%, 90% CI 1.7 to 4.3 mL·kg−1·min−1), maximum heart rate (TEM 2 beats·min−1, 1.3%, 90% CI 2 to 4 beats·min−1), and economy (TEM 1.6 mL·kg−1·min−1, 4.1%, 90% CI 1.1 to 2.8 mL·kg−1·min−1) were reproducible.

Conclusions:

The results suggest that endurance performance and physiological responses to a squash-specific fitness test are reproducible.

Restricted access

Matthew S. Hickey, David L. Costill and Scott W. Trappe

This study investigated the influence of drink carbonation and carbohydrate content on ad libitum drinking behavior and body fluid and electrolyte responses during prolonged exercise in the heat. Eight competitive male runners completed three 2-hr treadmill runs at 60% VO2max in an environmental chamber maintained at 30 C° and 40% RH. Three test drinks were used: 8% carbohydrate, low carbonation (8%-C); 8% carbohydrate, noncarbonated (8%-NC), and water (0%-NC). Blood samples were taken preexercise (0), at 60 and 120 min of exercise, and at 60 min of recovery (+60 min). The data suggest that while reports of heartburn tend to be higher on 8% carbohydrate drinks than on 0%-NC, this does not appear to be a function of drink carbonation. Similarly, the increased frequency of heartbum did not significantly reduce fluid consumption either during exercise or during a 60-min recovery period. Importantly, no differences were observed between fluid and electrolyte, or thermoregulatory responses to the three sport drinks. Thus, consumption of low-carbonation beverages does not appear to significantly influence drinking behavior or the related physiological responses during prolonged exercise in the heat.

Restricted access

Melitta A. McNarry, Joanne R. Welsman and Andrew M. Jones

The influence of training status on pulmonary VO2 recovery kinetics, and its interaction with maturity, has not been investigated in young girls. Sixteen prepubertal (Pre: trained (T, 11.4 ± 0.7 years), 8 untrained (UT, 11.5 ± 0.6 years)) and 8 pubertal (Pub: 8T, 14.2 ± 0.7 years; 8 UT, 14.5 ± 1.3 years) girls completed repeat transitions from heavy intensity exercise to a baseline of unloaded exercise, on both an upper and lower body ergometer. The VO2 recovery time constant was significantly shorter in the trained prepubertal and pubertal girls during both cycle (Pre: T, 26 ± 4 vs. UT, 32 ± 6; Pub: T, 28 ± 2 vs. UT, 35 ± 7 s; both p < .05) and upper body exercise (Pre: T, 26 ± 4 vs. UT, 35 ± 6; Pub: T, 30 ± 4 vs. UT, 42 ± 3 s; both p < .05). No interaction was evident between training status and maturity. These results demonstrate the sensitivity of VO2 recovery kinetics to training in young girls and challenge the notion of a “maturational threshold” in the influence of training status on the physiological responses to exercise and recovery.