Search Results

You are looking at 81 - 90 of 693 items for :

Clear All
Restricted access

Column-editor : Susan M. Kleiner

Restricted access

Martin Kristiansen, Ryna Levy-Milne, Susan Barr and Anne Flint

The purpose of this study was to assess reasons for and prevalence of supplement use among varsity athletes and nonvarsity athlete students (controls) at a Canadian university. A questionnaire, distributed to 247 varsity athletes and 204 controls, included variables regarding sports participation, supplements used, reasons for usage, perceived effects, and areas of interest about supplements. Response rates were 85.5% among varsity athletes and 44.6% among controls. Supplements were used by 98.6% of varsity athletes and 94.3% of controls. Varsity men most often reported using sports drinks, and used these (and carbohydrate gels, protein powder, and creatine) more than varsity women. Caffeine products were most often reported by other groups. Health professionals and the Internet were the most reported information sources, while friends most often recommended supplements. Many subjects indicated knowing little about supplements and wanting to learn more. Results indicate a need for nutrition education among both varsity athletes and university students.

Restricted access

Elizabeth Applegate

Athletes use a variety of nutritional ergogenic aids to enhance performance. Most nutritional aids can be categorized as a potential energy source, an anabolic enhancer, a cellular component, or a recovery aid. Studies have consistently shown that carbohydrates consumed immediately before or after exercise enhance performance by increasing glycogen stores and delaying fatigue. Protein and amino acid supplementation may serve an anabolic role by optimizing body composition crucial in strength-related sports. Dietary antioxidants, such as vitamins C and E and carotenes, may prevent oxidative stress that occurs with intense exercise. Performance during high-intensity exercise, such as sprinting, may be improved with short-term creatine loading, and high-effort exercise lasting 1-7 min may be improved through bicarbonate loading immediately prior to activity. Caffeine dosing before exercise delays fatigue and may enhance performance of high-intensity exercise.

Restricted access

Mette Hansen, Jens Bangsbo, Jørgen Jensen, Bo Martin Bibby and Klavs Madsen

This trial aimed to examine the effect of whey protein hydrolysate intake before and after exercise sessions on endurance performance and recovery in elite orienteers during a training camp. Eighteen elite orienteers participated in a randomized controlled intervention trial during a 1-week training camp (13 exercise sessions). Half of the runners (PRO-CHO) ingested a protein drink before (0.3 g kg−1) and a protein-carbohydrate drink after (0.3 g protein kg−1 and 1 g carbohydrate kg−1) each exercise session. The others ingested energy and timematched carbohydrate drinks (CHO). A 4-km run-test with 20 control points was performed before and on the last day of the intervention. Blood and saliva were obtained in the mornings, before and after run-tests, and after the last training session. During the intervention, questionnaires were fulfilled regarding psychological sense of performance capacity and motivation. PRO-CHO and not CHO improved performance in the 4-km run-test (interaction p < .05). An increase in serum creatine kinase was observed during the week, which was greater in CHO than PRO-CHO (interactionp < .01). Lactate dehydrogenase (p < .001) and cortisol (p = .057) increased during the week, but the change did not differ between groups. Reduction in sense of performance capacity during the intervention was greater in CHO (p < .05) than PRO-CHO. In conclusion, ingestion of whey protein hydrolysate before and after each exercise session improves performance and reduces markers of muscle damage during a strenuous 1-week training camp. The results indicate that protein supplementation in conjunction with each exercise session facilitates the recovery from strenuous training in elite orienteers.

Restricted access

Eric R. Helms, Caryn Zinn, David S. Rowlands, Ruth Naidoo and John Cronin

Purpose:

Athletes risk performance and muscle loss when dieting. Strategies to prevent losses are unclear. This study examined the effects of two diets on anthropometrics, strength, and stress in athletes.

Methods:

This double-blind crossover pilot study began with 14 resistance-trained males (20-43 yr) and incurred one dropout. Participants followed carbohydrate-matched, high-protein low-fat (HPLF) or moderate-protein moderate-fat (MPMF) diets of 60% habitual calories for 2 weeks. Protein intakes were 2.8g/kg and 1.6g/kg and mean fat intakes were 15.4% and 36.5% of calories, respectively. Isometric midthigh pull (IMTP) and anthropometrics were measured at baseline and completion. The Daily Analysis of Life Demands of Athletes (DALdA) and Profile of Mood States (POMS) were completed daily. Outcomes were presented statistically as probability of clinical benefit, triviality, or harm with effect sizes (ES) and qualitative assessments.

Results:

Differences of effect between diets on IMTP and anthropometrics were likely or almost certainly trivial, respectively. Worse than normal scores on DALDA part A, part B and the part A “diet” item were likely more harmful (ES 0.32, 0.4 and 0.65, respectively) during MPMF than HPLF. The POMS fatigue score was likely more harmful (ES 0.37) and the POMS total mood disturbance score (TMDS) was possibly more harmful (ES 0.29) during MPMF than HPLF.

Conclusions:

For the 2 weeks observed, strength and anthropometric differences were minimal while stress, fatigue, and diet-dissatisfaction were higher during MPMF. A HPLF diet during short-term weight loss may be more effective at mitigating mood disturbance, fatigue, diet dissatisfaction, and stress than a MPMF diet.

Restricted access

Rebekah D. Alcock, Gregory C. Shaw and Louise M. Burke

Collagen is the most abundant body protein, constituting around one third of total protein stores. Within the extracellular matrix of musculoskeletal and connective tissues, collagen contributes to force transmission and joint stability, providing resistance to forces and sudden directional changes

Restricted access

Andrew C. Fry, William J. Kraemer, Michael H. Stone, Beverly J. Warren, Jay T. Kearney, Carl M. Maresh, Cheryl A. Weseman and Steven J. Fleck

To examine the effects of 1 week of high volume weightlifting and amino acid supplementation, 28 elite junior male weightlifting received either amino acid (protein) or lactose (placebo) capsules using double-blind procedures. weightlifting test sessions were performed before and after 7 days of high volume training sessions. Serum concentrations of testosterone (Tes), cortisol (Cort), and growth hormone (GH) as well as whole blood iactate (HLa) were determined from blood draws. Lifting performance was not altered for either group after training, although vertical jump performance decreased for both groups. Both tests elicited significantly elevated exercise-induced hormonal and HLa concentrations. Significant decreases in postexercise hormonal and HLa concentrations from Test 1 to Test 2 were observed for both groups. Tes concentrations at 7 a.m. and preexercise decreased for both groups from Test 1 to Test 2, while the placebo group exhibited a decreased 7 a.m. Tes/ Cort. These data suggest that amino acid supplementation does not influence resting or exercise-induced hormonal responses to 1 week of high volume weight training, but endocrine responses did suggest an impending overtraining syndrome.

Restricted access

Satya S. Jonnalagadda, Dan Benardot and Marian Nelson

The nutrient intakes and dietary practices of elite, U.S. national team, artistic female gymnasts (n = 33) were evaluated using 3-day food records. The gymnasts' reported energy intake was 34.4 kcal/kg (total 1,678 kcal/day), which was 20% below the estimated energy requirement. The contributions of protein, fat, and carbohydrate to total energy intake were 17%, 18%, and 66%, respectively. All reported vitamin intakes, except vitamin E, were above the RDA. The reported mineral intakes, especially calcium, zinc, and magnesium, were less than 100% of the RDA. The overall nutrient densities of the subjects' diets were higher than expected. Eighty-two percent of the gymnasts reported taking nonprescription vitamin and mineral supplements, and 10% reported taking prescription vitamin and mineral supplements. Forty-eight percent of the gymnasts reported being on a self-prescribed diet. Compared to NHANES III, the reported nutrient intake of these gymnasts was different from that of the average U.S. adolescent female. In summary, certain key nutrients such as calcium, iron, and zinc should be given more attention to prevent nutrient deficiencies and subsequent health consequences.

Restricted access

Andre-Xavier Bigard, Pierre-Yves Guillemot, Jean-Yves Chauve, François Duforez, Pierre Portero and Charles-Yannick Guezennec

The purpose of the present study was to determine the nutritional intake of 11 skippers during the four stages of a solitary long-distance offshore race. Body weight significantly decreased during the race (−1.31 ±0.32 kg, range 3.5 to 0.1 kg, p < .01). Total daily energy intake was 18.53 ± 0.71 MJ ⋅ day-1 during the race, and it correlated negatively with the race duration of each leg. Energy intake during the race was ~ 19% greater than that determined for a subgroup of 5 sailors during a control period 2 months after the race. Nutrient intake expressed as percentage calories of total energy was estimated at 50%, 35%, and 15% for carbohydrate, fat, and protein, respectively. Voluntary fluid intake decreased with increasing race duration (p < .001). Despite high energy intakes, sailors lost body weight during the solitary offshore race. It was not possible to conclude that this change in body weight was related to fluid loss and/or a discrepancy between energy intake and energy expenditure.

Restricted access

Dennis van Hamont, Christopher R. Harvey, Denis Massicotte, Russell Frew, François Peronnet and Nancy J. Rehrer

Effects of feeding glucose on substrate metabolism during cycling were studied. Trained (60.0 ± 1.9 mL · kg−1 · min−1) males (N = 5) completed two 75 min, 80% VO2max trials: 125 g 13C-glucose (CHO); 13C-glucose tracer, 10 g (C). During warm-up (30 min 30% VO2max) 2 ⋅ 2 g 13C-glucose was given as bicarbonate pool primer. Breath samples and blood glucose were analyzed for 13C/ 12C with IRMS. Protein oxidation was estimated from urine and sweat urea. Indirect calorimetry (protein corrected) and 13C/ 12C enrichment in expired CO2 and blood glucose allowed exogenous (Gexo), endogenous (Gendo), muscle (Gmuscle), and liver glucose oxidation calculations. During exercise (75 min) in CHO versus C (respectively): protein oxidation was lower (6.8 ± 2.7, 18.8 ± 5.9 g; P = 0.01); Gendo was reduced (71.2 ± 3.8, 80.7 ± 5.7%; P = 0.01); Gmuscle was reduced (55.3 ± 6.1, 65.9 ± 6.0%; P = 0.01) compensated by increased Gexo (58.3 ± 2.1, 3.87 ± 0.85 g; P = 0.000002). Glucose ingestion during exercise can spare endogenous protein and carbohydrate, in fed cyclists, without gly-cogen depletion.