Search Results

You are looking at 81 - 90 of 529 items for :

Clear All
Restricted access

Stine Kloster, Ida Høgstedt Danquah, Andreas Holtermann, Mette Aadahl and Janne Schurmann Tolstrup


Harmful health effects associated with sedentary behavior may be attenuated by breaking up long periods of sitting by standing or walking. However, studies assess interruptions in sitting time differently, making comparisons between studies difficult. It has not previously been described how the definition of minimum break duration affects sitting outcomes. Therefore, the aim was to address how definitions of break length affect total sitting time, number of sit-to-stand transitions, prolonged sitting periods and time accumulated in prolonged sitting periods among office workers.


Data were collected from 317 office workers. Thigh position was assessed with an ActiGraph GT3X+ fixed on the right thigh. Data were exported with varying bout length of breaks. Afterward, sitting outcomes were calculated for the respective break lengths.


Absolute numbers of sit-to-stand transitions decreased, and number of prolonged sitting periods and total time accumulated in prolonged sitting periods increased, with increasing minimum break length. Total sitting time was not influenced by varying break length.


The definition of minimum break length influenced the sitting outcomes with the exception of total sitting time. A standard definition of break length is needed for comparison and interpretation of studies in the evolving research field of sedentary behavior.

Restricted access

Kristin Taraldsen, Beatrix Vereijken, Pernille Thingstad, Olav Sletvold and Jorunn L. Helbostad

The aim of the study was to investigate the precision of estimated upright time during one week in community-dwelling older adults after hip fracture when monitoring activity for different numbers of consecutive days. Information about upright time was collected by thigh-worn accelerometers during 7 consecutive days in 31 older adults (mean age 81.8 years ± 5.3) 3 months after hip-fracture surgery. Mean time in upright position, including both standing and walking, was 260.9 (±151.2) min/day. A cutoff value of half an hour was used to provide recommendations about number of recording days. Large variability between participants between days, as well as a nonconstant within-participant variability between days indicates that at least 4 consecutive days of recording should be used to obtain a reliable estimate of upright time for individual persons. However, at a group level, one day of recording is sufficient.

Restricted access

Michael P. Godard, David L. Williamson, David A. Porter, Gregory A. Rowden and Scott W. Trappe

This investigation examined alterations in neuromuscular drive for dynamic and static muscle contractions, muscle strength, and cross-sectional area (CSA) with a 12-week progressive resistance-training program (PRT). Nine healthy men (70.0 ± 1.7 years) were evaluated for maximal and submaximal neuromuscular drive (integrated electromyography [IEMG]), whole-muscle strength, isokinetic power, and thigh CSA. The results demonstrated no significant differences pre- to post-PRT in the submaximal IEMG signals (p > .05). IEMG increased (p < .05) for the maximal static contraction (29% ± 12%) and isokinetic velocities concentrically and eccentrically. There was an increase (p < .05) in maximal static strength (27% ± 5%), isokinetic concentric and eccentric strength, muscle power, IRM (47% ± 6%), and CSA (6% ± 1%; p < .05). The results reveal significant neuromuscular-drive alterations in concentric and eccentric dynamic contractions with PRT in older men and indicate that their neuromuscular drive contributes significantly to improving their concentric and eccentric skeletal-muscle strength.

Restricted access

Robert K. Jensen, Tina Treitz and Sylvie Doucet

The purpose of this study was to develop prediction equations to estimate mass, radius to the center of mass (CM), and principal moments of the segments during pregnancy. Nonlinear regression equations were determined for the lower trunk, upper trunk, and thigh. The third sampling month of a longitudinal study was used (Sample 1, n = 15). The nonlinear regressions were then used to predict segment inertias above and below the third sampling month (Sample 2, the remaining 74 measurements). For the remaining segments, body mass and segment lengths were used as predictor variables for mass, radius to CM, and radius of gyration about the centroidal axes. The remaining seven segments did not change substantially during pregnancy, and the means of the repeated measures were used for the simple linear regressions. Eighteen of the 28 regressions and all of the CM regressions were significant. With pregnant subjects it is recommended that these regressions be used if application of the elliptical cylinder model is not possible.

Restricted access

Lee N. Burkett, Jack Chisum, Jack Pierce and Kent Pomeroy

Twenty spinal injured wheelchair bound individuals were tested to peak VO2 on a wheelchair ergometer. Sixteen subjects were paraplegics (5 females, 11 males) and four were quadriplegic (2 females, 2 males). The level of injury ranged from C4-5 to L2-3. The mean age of the subjects was 29.9 years, with a mean weight of 63.66 kg. Prior to the peak VO2 and during the rest immediately after peak VO2, each subject was tested for the ability to discriminate touch over the skin of the thigh, leg, and foot. A chi square statistical technique was used to test for differences between pre- and postexercise sensitivity. The chi square was significant at the .003 level of significance. Because the increase in sensitivity was short, it was theorized that under peak exercise stress the body may recruit pathways that have been dormant, but not injured, explaining the increase in sensitivity.

Restricted access

Scott J. Black, Michael L. Woodhouse, Stephen Suttmiller and Larry Shall

The effects of hip position on thigh electromyographic (EMG) activity and knee torque were evaluated. Twenty-four recreational athletes (12 males and 12 females) volunteered to participate. Subjects were tested isokinetically at 30°/s in sitting and supine positions both concentrically and eccentrically during knee flexion and extension. Gravity-corrected torques (N·m) were obtained for all tests. EMG amplitude (mV) was collected via surface electrodes. Torque values were significantly greater (p<.05) for knee flexion in the sitting position when compared to the supine. EMG activity did not change relative to hip position but typically increased (p<.05) during concentric trials. Knee extension torque and EMG activity did not change during sitting or supine positions. Results indicated that the sitting position had statistically significant advantages over the supine position for producing greater hamstring torque and maintaining similar levels of EMG output during isokinetic knee flexion.

Restricted access

Kenneth G. Holt, Suh Fang Jeng and Linda Fetters

Preferred stride frequency (PSF) of adult human walking has been shown to be predictable as the resonant frequency of a force driven harmonic oscillator (FDHO). The purpose of this study was to determine whether the PSF of 9-year-old children was predictable using the same resonance formula as that of adults. Subjects walked around a gymnasium at a rate at which they felt comfortable. Stride frequency was measured as the time for 20 strides and the stride period was calculated. The best-fit prediction based on resonance was then calculated using the overall center of mass of three segments (foot, shank, thigh) to determine the simple pendulum equivalent (SPE) length. Results indicated that a constant of 2 applied to the gravitational constant of the resonance formula, the same formulation used for adults, can be used to predict the cadence of children.

Restricted access

Kensaku Suei, Leslie McGillis, Randy Calvert and Oded Bar-Or

We assess relationships among muscle endurance, strength, and explosiveness in forty-eight 9.6- to 17.0-year-old males divided into 3 maturational groups (Tanner Stages I, II-IV, and V). Peak torque during isometric knee extension and flexion was averaged to reflect strength. Mechanical power in the Sargent vertical jump was taken as explosiveness, and total work in the Wingate test reflected muscle endurance. Correlations (3 groups combined) among the variables, expressed in absolute terms, were r = .82 to .92, but only -.11 to .70 when expressed per body mass or lean thigh size. These correlations were distinctly lower in the Tanner V boys than in the 2 less-mature groups, which may suggest that specialization into discrete muscle performance characteristics does not occur before late puberty.

Restricted access

Ugo H. Buzzi and Beverly D. Ulrich

The purpose of this study was to examine the dynamic stability of two groups of children with different dynamic resources in changing contexts. The stability of the lower extremity segments of preadolescent children (8–10 years old) with and without Down syndrome (DS) was evaluated as children walked on a motorized treadmill at varying speeds. Tools from nonlinear dynamics, maximum Lyapunov exponent, and approximate entropy were used to assess the behavioral stability of segmental angular displacements of the thigh, shank, and foot. Our results suggest that children with DS show decreased dynamic stability during walking in all segments and that this might be a consequence of inherently different subsystem constraints between these groups. Differences between groups also varied, though not uniformly, with speed, suggesting that inherent differences could further constrain the behavioral response to changing task demands.

Restricted access

Yukio Urabe, Mitsuo Ochi and Kiyoshi Onari


To investigate changes in muscle strength in the lower extremity after ACL reconstruction.


Prospective case series.

Dependent Variables:

Isokinetic muscle strength measured in 6 movements (hip extension/flexion, hip adduction/abduction, knee extension/flexion) and circumference of the thigh/calf.


Clinic and home.


44 (24 men, 20 women) between the ages of 16 and 47 years with an ACL rupture. All underwent reconstruction via a semitendinosus autograft.

Main Outcome Measures:

The peak torque for each joint movement was recorded. Repeated-measures ANOVA and power analysis were conducted to detect significant interaction effects.


The decline of muscle strength after ACL reconstruction remained not only in the knee extensors and flexors but also in the hip adductors.


Rehabilitation programs that address the behavioral patterns and physiological characteristics of an ACL injury will benefit the athlete’s whole body and lead to a full recovery.