Search Results

You are looking at 81 - 90 of 261 items for :

Clear All
Restricted access

Kathe A. Gahel, Adrienne Aldous and Chad Edgington

Food and fluid intake of 2 male cyclists was assessed to describe dietary intakes of athletes participating in an endurance ride. Cyclists rode 15 to 18 hr each day for 10 days to travel 2,050 miles on the original Pony Express Trail over seven major mountain ranges. Food and fluids were weighed or measured by researchers. Average kilocalorie intake was 7,125 ± 340 (M ± SEM), or 113 kcal/kg/day. Percentages of protein, carbohydrate, and fat kilocalories were 10, 63, and 27, respectively, with 44% of the carbohydrate kilocalories from simple sugars, cookies, sweetened drinks, and candy. Vitamin and mineral intakes were two to three times the RDA for most vitamins and minerals. Total fluid intake averaged 10.5 L per day with an average of 620 ml/hr of riding time. Of fluid intake, 54% was water. Cyclists traveling long distances need a variety of high-calorie foods and ample amounts of fluids to maintain performance for this type of event.

Restricted access

Mitchell M. Kanter and Melvin H. Williams

Three nutritional products that have very different mechanisms of action are antioxidant vitamins, carnitine, and choline. Antioxidant vitamins do not appear to have a direct effect on physical performance in well-fed people but have been touted for their ability to detoxify potentially damaging free radicals produced during exercise. Carnitine purportedly enhances lipid oxidation, increases VO2max, and decreases plasma lactate accumulation during exercise. However, studies of carnitine do not generally support its use for ergogenic purposes. Choline supplements have been advocated as a means of preventing the decline in acetylcholine production purported to occur during exercise; this decline may reduce the transmission of contraction-generating impulses across the skeletal muscle, an effect that could impair one’s ability to perform muscular work. However, there are no definitive studies in humans that justify choline supplementation. Much of the scientific data regarding the aforementioned nutrients are equivocal and contradictory. Their potential efficacy for improving physical performance remains largely theoretical.

Restricted access

David B. Pyne, Evert A. Verhagen and Margo Mountjoy

In this review, we outline key principles for prevention of injury and illness in aquatic sports, detail the epidemiology of injury and illness in aquatic athletes at major international competitions and in training, and examine the relevant scientific evidence on nutrients for reducing the risk of illness and injury. Aquatic athletes are encouraged to consume a well-planned diet with sufficient calories, macronutrients (particularly carbohydrate and protein), and micronutrients (particularly iron, zinc, and vitamins A, D, E, B6, and B12) to maintain health and performance. Ingesting carbohydrate via sports drinks, gels, or sports foods during prolonged training sessions is beneficial in maintaining energy availability. Studies of foods or supplements containing plant polyphenols and selected strains of probiotic species are promising, but further research is required. In terms of injury, intake of vitamin D, protein, and total caloric intake, in combination with treatment and resistance training, promotes recovery back to full health and training.

Restricted access

Yuki Kokubo, Yuri Yokoyama, Kumiko Kisara, Yoshiko Ohira, Ayaka Sunami, Takahiro Yoshizaki, Yuki Tada, Sakuko Ishizaki, Azumi Hida and Yukari Kawano

This cross-sectional study explored the prevalence of iron deficiency (ID) and associations between dietary factors and incidence of ID in female rhythmic gymnasts during preseason periods. Participants were 60 elite collegiate rhythmic gymnasts (18.1 ± 0.3 years [M ± SD]) who were recruited every August over the course of 8 years. Participants were divided into 2 groups according to the presence or absence of ID. Presence of ID was defined either by ferritin less than 12 µg/L or percentage of transferrin saturation less than 16%. Anthropometric and hematologic data, as well as dietary intake, which was estimated via a semiquantitative food frequency questionnaire, were compared. ID was noted in 48.3% of participants. No significant group-dependent differences were observed in physical characteristics, red blood cell counts, hemoglobin, hematocrit, haptoglobin, or erythropoietin concentrations. The ID group had a significantly lower total iron-binding capacity; serum-free iron; percentage of transferrin saturation; ferritin; and intake of protein, fat, zinc, vitamin B2, vitamin B6, beans, and eggs but not iron or vitamin C. The recommended dietary allowance for intake of protein, iron, zinc, and various vitamins was not met by 30%, 90%, 70%, and 22%–87% of all participants, respectively. Multiple logistic analysis showed that protein intake was significantly associated with the incidence of ID (odds ratio = 0.814, 95% confidence interval [0.669, 0.990], p = .039). Participants in the preseason’s weight-loss periods showed a tendency toward insufficient nutrient intake and were at a high risk for ID, particularly because of lower protein intake.

Restricted access

Donna Beshgetoor and Jeanne F. Nichols

This study compared the dietary intakes of supplementing (SA) and non-supplementing athletes (NSA). Twenty-five female master athletes (mean age = 50.4 yr) participated in the study (SA = 16, NSA = 9). Four-day diet records were analyzed using Nutritionist V. Statistical significance (p < .005) was determined by independent t tests. No significant differences were observed in intakes of kilocalories (SA = 2079 ± 628 kcals, NSA = 2001 ± 435 kcals), protein (SA = 104 ± 75 g, NSA = 84 ± 35 g), fat (SA = 65 ± 39 g, NSA = 61 ± 22 g), or carbohydrates (SA = 269 ± 112 g, NSA = 277 ± 43 g). Mean intakes exceeded Dietary Reference Intake (DRI) guidelines for all micro-nutrients except calcium and vitamin E (NSA = 79% and 87% of DRI, respectively). SA had significantly greater total intakes than NSA for calcium (p = .0001), magnesium (p = .004), vitamin C (p = .003), and vitamin E (p = .001). Results suggest that female master athletes may rely on dietary supplements rather than nutrient-dense food choices to provide daily nutritional needs.

Restricted access

Antoni Aguiló, Pere Tauler, Emilia Fuentespina, Gerardo Villa, Alfredo Córdova, Josep A. Tur and Antoni Pons

Objective:

The aim of this work was to check the effects of antioxidant supplementation (vitamins E and C, and β-carotene) on the basal iron status of athletes prior to and following their training and competition season (3 months).

Design:

Eighteen amateur trained male athletes were randomly distributed in 2 groups: placebo (lactose) and antioxidant supplemented (vitamin E, 500 mg/d; vitamin C, 1 g/d; and β-carotene, 30 mg/d). The study was double blind. Hematological parameters, dietary intake, physical activity intensity, antioxidant status (GSH/GSSG ratio), and basal iron status (serum iron, transferrin, ferritin, and iron saturation index) were determined before and after the intervention trials.

Results:

Exercise decreased antioxidant defenses in the placebo group but not in the antioxidant-supplemented group. No changes were found in the number of erythrocytes, hematocrit, or hemoglobin concentration, or in values of serum iron parameters, after taking the antioxidant cocktail for 3 months, in spite of the exercise completed. The placebo group showed a high oxidative stress index, and decreases in serum iron (24%) and iron saturation index (28%), which can neither be attributed to aspects of the athletes’ usual diet, nor to hemoconcentration.

Conclusions:

Antioxidant supplementation prevents the decrease of serum iron and the iron saturation index, and a link between iron metabolism and oxidative stress may also be suggested.

Restricted access

Kimberly M. White, Stephanie J. Bauer, Kristopher K. Hartz and Monika Baldridge

Introduction:

Resistance training is an effective method to decrease body fat (BF) and increase fat-free mass (FFM) and fat oxidation (FO). Dairy foods containing calcium and vitamin D might enhance these benefits. This study investigated the combined effects of habitual yogurt consumption and resistance training on body composition and metabolism.

Methods:

Untrained women (N = 35) participated in an 8-wk resistance-training program. The yogurt group (Y) consumed 3 servings of yogurt containing vitamin D per day, and the control groups maintained their baseline lowdairy-calcium diet. Postexercise, Y consumed 1 of the 3 servings/d fat-free yogurt, the protein group consumed an isocaloric product without calcium or vitamin D, and the carbohydrate group consumed an isocaloric product without protein. Strength, body composition, fasted resting metabolic rate (RMR) and FO, and serum 25-hydroxyvitamin D were measured before and after training.

Results:

Calories (kcal · kg−1 · d−1) and protein (g · kg−1 · d−1) significantly increased from baseline for Y. FFM increased (main effect p = .002) and %BF decreased (main effect .02) for all groups with training, but Group × Time interactions were not observed. RMR and FO did not change with training for any group.

Conclusion:

Habitual consumption of yogurt during resistance training did not augment changes in body composition compared with a low-dairy diet. Y decreased %BF as a result of training, however, even with increased calorie consumption.

Restricted access

Jay L. Tuttle, Jeffrey A. Potteiger, Blanche W. Evans and John C. Ozmun

This study examined the effects of aspartate supplementation (ASP) on plasma ammonia concentrations ([NH4+]) during and after a resistance training workout (RTW). Twelve male weight trainers were randomly administered ASP or vitamin C in a crossover, double blind protocol, each trial separated by 1 wk. ASP and vitamin C were given over a 2-hr period beginning 5 hr prior to the RTW. The RTW consisted of bench, incline, shoulder, and triceps presses, and biceps curls at 70% of one repetition maximum (1-RM). After the RTW a bench press test (BPT) to failure at 65% of 1-RM was used to assess performance. [NH4+] was determined preexercise, 20 and 40 min midworkout, immediately postexercise, and 15 min postexercise. Treatment-by-time ANOVAs, paired t tests, and contrast comparisons were used to identify mean differences. No significant differences were observed between treatments for [NH4+] or BPT. [NH4+] increased significantly from Pre to immediately postexercise for both the ASP and vitamin C trials. Acute ASP supplementation does not reduce [NH4+] during and after a high intensity RTW in weight trained subjects.

Restricted access

Richard D. Lewis and Christopher M. Modlesky

Calcium and vitamin D can significantly impact bone mineral and fracture risk in women. Unfortunately, calcium intakes in women are low and many elderly have poor vitamin D status. Supplementation with calcium (~1000 mg) can reduce bone loss in premenopausal and late postmenopausal women, especially at sites that have a high cortical bone composition. Vitamin D supplementation slows bone loss and reduces fracture rates in late postmenopausal women. While an excess of nutrients such as sodium and protein potentially affect bone mineral through increased calcium excretion, phytoestrogens in soy foods may attenuate bone loss ihrough eslrogenlike activity. Weight-bearing physical activity may reduce the risk of osteoporosis in women by augmenting bone mineral during the early aduli years and reducing the loss of bone following menopause. High-load activities, such as resistance training, appear to provide the best stimulus for enhancing bone mineral; however, repetitive activities, such as walking, may have a positive impact on bone mineral when performed at higher intensities. Irrespective of changes in bone mineral, physical activities that improve muscular strength, endurance, and balance may reduce fracture risk by reducing the risk of falling. The combined effect of physical activity and calcium supplementation on bone mineral needs further investigation.

Restricted access

Maria José Tormo, Carmen Navarro, Maria-Dolores Chirlaque, Xavier Barber, Silvia Argilaga, Antonio Agudo, Pilar Amiano, Aurelio Barricarte, Jose M. Beguiristain, Miren Dorronsoro, Carlos Alberto González, Carmen Martínez, José Ramón Quirós and Mauricio Rodríguez

This study evaluated the dietary pattern of foods and nutrients according to levels of vigorous leisure time physical activity (PA) assessed at recruitment within the Spanish cohort of the European Prospective Investigation on Cancer (EPIC) study (37,287 healthy volunteers with complete information). We used a validated PA questionnaire (PAQ) to measure the weekly frequency and duration of different kinds of sport activities. For dietary assessment, we used a validated diet history questionnaire that included all items consumed with a frequency of at least twice a month. We tested differences in food and nutrient intake according to PA duration by means of both an analysis of variance and an analysis of covariance adjusted for confounding factors. Linear increases or decreases in food and nutrient intake across PA levels were tested by means of a regression analysis. Only 11% of men and 6% of women performed at least 3 hours/week of intense PA, which is similar to current recommendations. Overall, main nutrient and total energy intakes were similar across different PA levels (<2% change in total energy intake between extreme PA categories). However, the intake of some foods and vitamins did significantly (p ≤ .05) increase as PA increased. The average gender-weighted percentage change in the intake of food and vitamins increased when moving from the lowest levels of PA to the highest. There was an increase in the intake of the following: 15.9% in vegetables, 6.7% in fruit, 9% in fish, 5.6% in dairy products, 10% in vitamin C, 5.9% in vitamin E, 7.2% in retinol, 19.7% in total carotene, 40.1% in α-carotene, 20.4% in ß-carotene, 11.2% in licopene, and 26.1% in lutein. BMI, which was above average for the cohort (mean ± SD: 28.4 ± 4.2), decreased steadily when PA increased. To sum up, in this large Spanish cohort, the differences in dietary intake relative to levels of PA were not found either in the amount of total energy consumed nor in the number of main macronutrients but rather in the intake of certain foods which, while having very little or moderate caloric content, are very rich in highly bioactive elements such as vitamins and provitamins.