Search Results

You are looking at 1 - 10 of 15 items for :

  • Sport and Exercise Science/Kinesiology x
Clear All
Restricted access

Aline C. Tritto, Salomão Bueno, Rosa M.P. Rodrigues, Bruno Gualano, Hamilton Roschel and Guilherme G. Artioli

β-Hydroxy-β-methylbutyrate (HMB) exhibits anabolic and anticatabolic actions in skeletal muscle ( Wilkinson et al., 2013 ). However, studies examining HMB supplementation and resistance training have reported mixed results ( Jówko et al., 2001 ; Kreider et al., 1999 ; O’Connor & Crowe, 2007

Restricted access

Melissa J. Crowe, Donna M. O’Connor and Joann E. Lukins

This study aimed to investigate the effects of 6 wk oral supplementation of ß-hydroxy- ß-methylbutyrate (HMB) and HMB combined with creatine monohy-drate (HMBCr) on indices of health in highly trained athletes. Elite, male rugby league players (n = 28) were allocated to 1 of 3 groups: a control group (n = 6), a HMB group (3 g/d; n = 11), or a HMBCr group (3 g/day HMB, 3 g/d Cr; n = 11). Testing prior to, and immediately following, supplementation included a full blood count, plasma testosterone and cortisol, blood electrolytes, lipids, urea and glucose, sperm count and motility, and assessment of psychological state. A 3 X 2 factorial ANOVA revealed no effect of HMB or HMBCr on any of the measured parameters except minor changes in blood bicarbonate and blood monocyte and lymphocyte counts. Blood bicarbonate was significantly decreased in the HMB post-supplementation sample compared to the control and HMBCr groups. Blood monocyte and lymphocyte counts showed no within-group changes for HMB or HMBCr supplementation but were significantly different from the control. However, the majority of these readings remained within normal range. HMB and HMBCr were concluded to have no adverse effects on the parameters evaluated in this study when taken orally by highly trained male athletes over a 6-wk period.

Restricted access

Douglas Paddon-Jones, Andrew Keech and David Jenkins

Purpose:

We examined the effects of short-term β-hydroxy-β-methylbutyrate (HMB) supplementation on symptoms of muscle damage following an acute bout of eccentric exercise.

Methods:

Non-resistance trained subjects were randomly assigned to a HMB supplement group (HMB, 40mg/kg body weight/day, n = 8) or placebo group (CON, n = 9). Supplementation commenced 6 days prior to a bout of 24 maximal isokinetic eccentric contractions of the elbow flexors and continued throughout post-testing. Muscle soreness, upper arm girth, and torque measures were assessed pre-exercise, 15 min post-exercise, and 1,2,3, 4,7, and 10 days post-exercise.

Results:

No pre-test differences between HMB and CON groups were identified, and both performed a similar amount of eccentric work during the main eccentric exercise bout (p > .05). HMB supplementation had no effect on swelling, muscle soreness, or torque following the damaging eccentric exercise bout (p > .05).

Conclusion:

Compared to a placebo condition, short-term supplementation with 40mg/kg body weight/day of HMB had no beneficial effect on a range of symptoms associated with eccentric muscle damage. If HMB can produce an ergogenic response, a longer pre-exercise supplementation period may be necessary.

Open access

Eric S. Rawson, Mary P. Miles and D. Enette Larson-Meyer

may help athletes to train and/or compete more effectively without performance impediments. These supplements include creatine monohydrate, beta-hydroxy beta-methylbutyrate (HMB), omega-3 fatty acids, vitamin D, probiotics, gelatin, and anti-inflammatory supplements such as curcumin or tart cherry

Restricted access

Gary Slater, David Jenkins, Peter Logan, Hamilton Lee, Matthew Vukovich, John A. Rathmacher and Allan G. Hahn

This investigation evaluated the effects of oral β-Hydroxy-β-Methylbutyrate (HMB) supplementation on training responses in resistance-trained male athletes who were randomly administered HMB in standard encapsulation (SH), HMB in time release capsule (TRH), or placebo (P) in a double-blind fashion. Subjects ingested 3 g · day−1 of HMB or placebo for 6 weeks. Tests were conducted pre-supplementation and following 3 and 6 weeks of supplementation. The testing battery assessed body mass, body composition (using dual energy x-ray absorptiometry), and 3-repetition maximum isoinertial strength, plus biochemical parameters, including markers of muscle damage and muscle protein turnover. While the training and dietary intervention of the investigation resulted in significant strength gains (p < .001) and an increase in total lean mass (p = .01), HMB administration had no influence on these variables. Likewise, biochemical markers of muscle protein turnover and muscle damage were also unaffected by HMB supplementation. The data indicate that 6 weeks of HMB supplementation in either SH or TRH form does not influence changes in strength and body composition in response to resistance training in strength-trained athletes.

Restricted access

Ken A. van Someren, Adam J. Edwards and Glyn Howatson

This study examined the effects of β-hydroxy-β-methylbutyrate (HMB) and α-ketoisocaproic acid (KIC) supplementation on signs and symptoms of exercise-induced muscle damage following a single bout of eccentrically biased resistance exercise. Six non-resistance trained male subjects performed an exercise protocol designed to induce muscle damage on two separate occasions, performed on the dominant or non-dominant arm in a counter-balanced crossover design. Subjects were assigned to an HMB/KIC (3 g HMB and 0.3 g α-ketoisocaproic acid, daily) or placebo treatment for 14 d prior to exercise in the counter-balanced crossover design. One repetition maximum (1RM), plasma creatine kinase activity (CK), delayed onset muscle soreness (DOMS), limb girth, and range of motion (ROM) were determined pre-exercise, at 1h, 24 h, 48 h, and 72 h post-exercise. DOMS and the percentage changes in 1RM, limb girth, and ROM all changed over the 72 h period (P < 0.05). HMB/KIC supplementation attenuated the CK response, the percentage decrement in 1RM, and the percentage increase in limb girth (P < 0.05). In addition, DOMS was reduced at 24 h post-exercise (P < 0.05) in the HMB/KIC treatment. In conclusion, 14 d of HMB and KIC supplementation reduced signs and symptoms of exercise-induced muscle damage in non-resistance trained males following a single bout of eccentrically biased resistance exercise.

Open access

Amy J. Hector and Stuart M. Phillips

restriction ( Hector et al., 2015 ). The leucine metabolite β-hydroxy-β-methylbutyrate (HMB) is currently prominently featured in the literature as a supplement with the potential to increase LBM and decrease fat mass, even during resistance exercise training in energy balance. For example, in recreationally

Restricted access

Cédric R.H. Lamboley, Donald Royer and Isabelle J. Dionne

The aim of this study was to determine the effects of oral β-hydroxy-β-methylbutyrate (HMB) supplementation (3 g/d) on selected components of aerobic performance and body composition of active college students. Subjects were randomly assigned to either an HMB (n = 8) or a placebo (PLA) group (n = 8) for a 5-wk supplementation period during which they underwent interval training 3 times a week on a treadmill. Aerobic-performance components were measured using a respiratory-gas analyzer. Body composition was determined using dual-energy X-ray absorptiometry. After the intervention, there were significant differences (P < 0.05) between the 2 groups in gains in maximal oxygen consumption (+8.4% for PLA and +15.5% for HMB) and in respiratory-compensation point (+8.6% for PLA and +13.4% for HMB). Regarding body composition, there were no significant differences. The authors concluded that HMB supplementation positively affects selected components of aerobic performance in active college students.

Restricted access

Kathryn Froiland, Wanda Koszewski, Joshua Hingst and Lisa Kopecky

A survey was conducted to examine the source of information and usage of nutritional supplements in 115 male and 88 female varsity athletes at a Division I university. The survey asked each athlete to define supplement, and report supplement use and type, source of information, and reasons for use. Supplement use frequencies were determined, and comparisons were made between gender and sport. Eighty-nine percent of the subjects had or were currently using nutritional supplements. Many athletes did not consider sports drinks and calorie replacement products as supplements. Females were more likely to take calcium and multivitamins, and males had significant intake for ginseng, amino acids, glutamine, hydroxy-methyl-buterate (HMB), weight gainers, whey protein, and Juven. The most frequently used supplements overall were energy drinks (73%), calorie replacement products of all types (61.4%), multivitamin (47.3%), creatine (37.2%), and vitamin C (32.4%). There was also significant supplement use noted per sport. Females were more likely to obtain information from family members regarding supplementation, and males from a store nutritionist, fellow athletes, friends, or a coach. Female athletes were more likely to take supplements for their health or because of an inadequate diet, while men reported taking supplements to improve speed and agility, strength and power, or for weight/muscle gain.

Open access

Ronald J. Maughan, Louise M. Burke, Jiri Dvorak, D. Enette Larson-Meyer, Peter Peeling, Stuart M. Phillips, Eric S. Rawson, Neil P. Walsh, Ina Garthe, Hans Geyer, Romain Meeusen, Luc van Loon, Susan M. Shirreffs, Lawrence L. Spriet, Mark Stuart, Alan Vernec, Kevin Currell, Vidya M. Ali, Richard G.M. Budgett, Arne Ljungqvist, Margo Mountjoy, Yannis Pitsiladis, Torbjørn Soligard, Uğur Erdener and Lars Engebretsen

or muscular benefits, may receive important brain benefits as well. A small increase in body mass is common with supplementation. This may be relevant for sports with weight classes/restrictions or where increased body mass may decrease performance. Beta-hydroxy beta-methylbutyrate (HMB): HMB is a