Different dietary proteins affect whole body protein anabolism and accretion and therefore, have the potential to influence results obtained from resistance training. This study examined the effects of supplementation with two proteins, hydrolyzed whey isolate (WI) and casein (C), on strength, body composition, and plasma glutamine levels during a 10 wk, supervised resistance training program. In a double-blind protocol, 13 male, recreational bodybuilders supplemented their normal diet with either WI or C (1.5 gm/kg body wt/d) for the duration of the program. Strength was assessed by 1-RM in three exercises (barbell bench press, squat, and cable pull-down). Body composition was assessed by dual energy X-ray absorptiometry. Plasma glutamine levels were determined by the enzymatic method with spectrophotometric detection. All assessments occurred in the week before and the week following 10 wk of training. Plasma glutamine levels did not change in either supplement group following the intervention. The WI group achieved a significantly greater gain (P < 0.01) in lean mass than the C group (5.0 ± 0.3 vs. 0.8 ± 0.4 kg for WI and C, respectively) and a significant (P < 0.05) change in fat mass (−1.5 ± 0.5 kg) compared to the C group (+0.2 ± 0.3 kg). The WI group also achieved significantly greater (P < 0.05) improvements in strength compared to the C group in each assessment of strength. When the strength changes were expressed relative to body weight, the WI group still achieved significantly greater (P < 0.05) improvements in strength compared to the C group.
Search Results
The Effect of Whey Isolate and Resistance Training on Strength, Body Composition, and Plasma Glutamine
Paul J. Cribb, Andrew D. Williams, Michael F. Carey, and Alan Hayes
Acute-Weight-Loss Strategies for Combat Sports and Applications to Olympic Success
Reid Reale, Gary Slater, and Louise M. Burke
It is common for athletes in weight-category sports to try to gain a theoretical advantage by competing in weight divisions that are lower than their day-to-day body mass (BM). Weight loss is achieved not only through chronic strategies (body-fat losses) but also through acute manipulations before weigh-in (“making weight”). Both have performance implications. This review focuses on Olympic combat sports, noting that the varied nature of regulations surrounding the weigh-in procedures, weight requirements, and recovery opportunities in these sports provide opportunity for a wider discussion of factors that can be applied to other weight-category sports. The authors summarize previous literature that has examined the performance effects of weightmaking practices before investigating the physiological nature of these BM losses. Practical recommendations in the form of a decision tree are provided to guide the achievement of acute BM loss while minimizing performance decrements.
Two Minutes of Sprint-Interval Exercise Elicits 24-hr Oxygen Consumption Similar to That of 30 min of Continuous Endurance Exercise
Tom J. Hazell, T. Dylan Olver, Craig D. Hamilton, and Peter W. R. Lemon
Six weeks (3 times/wk) of sprint-interval training (SIT) or continuous endurance training (CET) promote body-fat losses despite a substantially lower training volume with SIT. In an attempt to explain these findings, the authors quantified VO2 during and after (24 h) sprint-interval exercise (SIE; 2 min exercise) vs. continuous endurance exercise (CEE; 30 min exercise). VO2 was measured in male students (n = 8) 8 times over 24 hr under 3 treatments (SIE, CEE, and control [CTRL, no exercise]). Diet was controlled. VO2 was 150% greater (p < .01) during CEE vs. SIE (87.6 ± 13.1 vs. 35.1 ± 4.4 L O2; M ± SD). The observed small difference between average exercise heart rates with CEE (157 ± 10 beats/min) and SIE (149 ± 6 beats/min) approached significance (p = .06), as did the difference in peak heart rates during CEE (166 ± 10 beats/min) and SIE (173 ± 6 beats/min; p = .14). Total O2 consumed over 8 hr with CEE (263.3 ± 30.2 L) was greater (p < .01) than both SIE (224.2 ± 15.3 L; p < .001) and CTRL (163.5 ± 16.1 L; p < .001). Total O2 with SIE was also increased over CTRL (p < .001). At 24 hr, both exercise treatments were increased (p < .001) vs. CTRL (CEE = 500.2 ± 49.2; SIE = 498.0 ± 29.4; CTRL = 400.2 ± 44.6), but there was no difference between CEE and SIE (p = .99). Despite large differences in exercise VO2, the protracted effects of SIE result in a similar total VO2 over 24 hr vs. CEE, indicating that the significant body-fat losses observed previously with SIT are partially due to increases in metabolism postexercise.
Novel Markers of Recovery From Overtraining Syndrome: The EROS-LONGITUDINAL Study
Flavio A. Cadegiani, Pedro Henrique L. Silva, Tatiana C.P. Abrao, and Claudio E. Kater
, possibly due to complex mechanisms that have been hypothesized previously. 10 , 11 In this context, athletes did not present the expected body composition changes during the 12-week intervention period. Instead, they showed trends toward body fat loss and lean mass increase, although not significantly