Search Results

You are looking at 1 - 10 of 941 items for :

  • "body mass" x
  • Physical Education and Coaching x
Clear All
Restricted access

Jason D. Vescovi and Greig Watson

have demonstrated a wide range of postmatch changes in body mass (+0.4 to −3.5 kg; Nuccio et al., 2017 ). Changes in body mass for male field hockey players are likely to exceed that observed in their female counterparts (−0.2 to −0.5% reduction in body mass; MacLeod & Sunderland, 2009 ) because

Restricted access

Niall Casserly, Ross Neville, Massimiliano Ditroilo and Adam Grainger

through appropriate conditioning. 12 This challenge is made all the more arduous; however, when typically smaller junior players (forwards = 96.88 [9.0] kg; backs = 81.97 [7.09] kg) 13 must undergo increases in body mass to reach senior norms (forwards = 114.6 [6.3] kg; backs = 92.6 [4.9] kg). 14

Restricted access

Ching T. Lye, Swarup Mukherjee and Stephen F. Burns

et al., 2006 ). Finally, postprandial TAG is exaggerated in overweight men, even when fasting TAG is normal ( Halkes et al., 2001 ). Moreover, cardiovascular risk factors often present before a body mass index (BMI) of 25 kg/m 2 in Chinese populations ( WHO Expert Consultation, 2004 ), and some

Restricted access

Ciro José Brito, Aendria Fernanda Castro Martins Roas, Igor Surian Souza Brito, João Carlos Bouzas Marins, Claudio Córdova and Emerson Franchini

The aim of this study was to investigate the methods adopted to reduce body mass (BM) in competitive athletes from the grappling (judo, jujitsu) and striking (karate and tae kwon do) combat sports in the state of Minas Gerais, Brazil. An exploratory methodology was employed through descriptive research, using a standardized questionnaire with objective questions self-administered to 580 athletes (25.0 ± 3.7 yr, 74.5 ± 9.7 kg, and 16.4% ± 5.1% body fat). Regardless of the sport, 60% of the athletes reported using a method of rapid weight loss (RWL) through increased energy expenditure. Strikers tend to begin reducing BM during adolescence. Furthermore, 50% of the sample used saunas and plastic clothing, and only 26.1% received advice from a nutritionist. The authors conclude that a high percentage of athletes uses RWL methods. In addition, a high percentage of athletes uses unapproved or prohibited methods such as diuretics, saunas, and plastic clothing. The age at which combat sport athletes reduce BM for the first time is also worrying, especially among strikers.

Restricted access

Joshua Darrall-Jones, Gregory Roe, Shane Carney, Ryan Clayton, Padraic Phibbs, Dale Read, Jonathon Weakley, Kevin Till and Ben Jones

Purpose:

To evaluate the difference in performance of the 30-15 Intermittent Fitness Test (30–15IFT) across 4 squads in a professional rugby union club in the UK and consider body mass in the interpretation of the end velocity of the 30-15IFT (VIFT).

Methods:

One hundred fourteen rugby union players completed the 30-15IFT midseason.

Results:

VIFT demonstrated small and possibly lower (ES = –0.33; 4/29/67) values in the under 16s compared with the under 21s, with further comparisons unclear. With body mass included as a covariate, all differences were moderate to large and very likely to almost certainly lower in the squads with lower body mass, with the exception of comparisons between senior and under-21 squads.

Conclusions:

The data demonstrate that there appears to be a ceiling to the VIFT attained in rugby union players that does not increase from under-16 to senior level. However, the associated increases in body mass with increased playing level suggest that the ability to perform high-intensity running increases with age, although not translating into greater VIFT due to the detrimental effect of body mass on change of direction. Practitioners should be aware that VIFT is unlikely to improve, but it needs to be monitored during periods where increases in body mass are evident.

Restricted access

Paul B. Gastin, Denny Meyer, Emy Huntsman and Jill Cook

Purpose:

To assess the relationships between player characteristics (including age, playing experience, ethnicity, and physical fitness) and in-season injury in elite Australian football.

Design:

Single-cohort, prospective, longitudinal study.

Methods:

Player characteristics (height, body mass, age, experience, ethnicity, playing position), preseason fitness (6-min run, 40-m sprint, 6 × 40-m sprint, vertical jump), and in-season injury data were collected over 4 seasons from 1 professional Australian football club. Data were analyzed for 69 players, for a total of 3879 player rounds and 174 seasons. Injury risk (odds ratio [OR]) and injury severity (matches missed; rate ratio [RR]) were assessed using a series of multilevel univariate and multivariate hierarchical linear models.

Results:

A total of 177 injuries were recorded with 494 matches missed (2.8 ± 3.3 matches/injury). The majority (87%) of injuries affected the lower body, with hamstring (20%) and groin/hip (14%) most prevalent. Nineteen players (28%) suffered recurrent injuries. Injury incidence was increased in players with low body mass (OR = 0.887, P = .005), with poor 6-min-run performance (OR = 0.994, P = .051), and playing as forwards (OR = 2.216, P = .036). Injury severity was increased in players with low body mass (RR = 0.892, P = .008), tall stature (RR = 1.131, P = .002), poor 6-min-run (RR = 0.990, P = .006), and slow 40-m-sprint (RR = 3.963, P = .082) performance.

Conclusions:

The potential to modify intrinsic risk factors is greatest in the preseason period, and improvements in aerobic-running fitness and increased body mass may protect against in-season injury in elite Australian football.

Restricted access

Thomas W. Buford, Douglas B. Smith, Matthew S. O’Brien, Aric J. Warren and Stephen J. Rossi

Purpose:

The purpose of the present investigation was to examine the physiological response of collegiate wrestlers to their competitive season.

Methods:

Eleven Division I collegiate wrestlers (mean ± SD; 19.45 ± 1.13 y) volunteered and completed 4 testing sessions throughout the course of the collegiate wrestling season. Testing sessions were conducted pre-, mid-, and postseason, as well as before the national tournament. Testing consisted of weigh-in, skinfold body composition testing, and a 50-rep concentric, isokinetic leg extension muscle endurance test (180°/s). Muscular performance variables measured included peak torque, peak torque at fatigue, percent decline, and peak torque/body mass ratio.

Results:

A significant increase (P < .05) of 2.9% was observed for body mass between midseason and postseason (2.38 kg). From pre- to postseason, a mean increase of 3.8% (3.1 kg) was observed for body mass. An increase (P < .05) in BF% of 2.9% was observed between prenationals and postseason. No significant differences (P > .05) were observed between consecutive time points for quadriceps peak torque; however, there was a significant increase (P < .05) between preseason and prenationals (23.39 N·m). Peak torque at fatigue was greater (P < .05) at midseason than preseason, representing an increase of 9.82 N·m. Between midseason and prenationals testing, we observed an 11% increase (P < .05) in %DCLN. Finally, we noted an increase (P < .05) from 0.6 to 0.69 in peak torque/body mass ratio between preseason and prenationals.

Conclusions:

Our results indicate that while force values seem to suffer at midseason, the wrestlers compensated and were strongest just before their national competition.

Restricted access

Samuel N. Cheuvront, Robert Carter III, Scott J. Montain and Michael N. Sawka

The purpose of this study was to quantify the variability and stability of 1st morning body mass (BM) fluctuations during daily exercise in the heat while following traditional fluid intake guidance. Data from 65 men were examined retrospectively. BM fluctuations were monitored over 4 to 15 consecutive days. Group daily variation in BM was 0.51 ± 0.20 kg. Group coefficient of variation was 0.66 ± 0.24%, normally distributed, and not related to either absolute BM (r = 0.04) or number of measurements (r = 0.34). Three days resulted in a similar variability estimate compared to 6 or 9 d, although precision was improved with 9 d. In conclusion, 3 consecutive BM measurements provide an accurate assessment of daily BM variability, which is less than 1% for active men when replacing 100% of sweat losses during exercise. The data also suggest that daily BM is a sufficiently stable physiological parameter for potential daily fluid balance monitoring.

Restricted access

Reid Reale, Gregory R. Cox, Gary Slater and Louise M. Burke

We examined the relationship between the regain of body mass (BM) after weigh-in and success in real-life judo competition. Eighty-six (36 females, 50 males) senior judoka volunteered for this observational study of an international judo competition. Subjects were weighed at the official weigh-in and one hour before their first competition fight (15–20 hr later). Regain in BM after weigh-in was compared between medal winners and nonmedalists, winners and losers of each fight, males and females and across weight divisions. Heavyweights were excluded from analysis. Prefight BM was greater than BM at official weigh-in for both males and females, with % BM gains of 2.3 ± 2.0 (p ≤ .0001; ES= 1.59; CI95% [1.63, 2.98]) and 3.1 ± 2.2 (p ≤ .0001; ES = 2.03; CI95% [2.30, 3.89]), respectively. No significant differences were found between weight divisions for post weigh-in BM regain. Differences in post weigh-in BM regain were significantly higher in medal winners than nonmedalists for males and females combined (1.4 ± 0.4% BM; p = .0026; ES= 0.69; CI95% [0.05, 2.34]) and for males alone (1.5 ± 0.6% BM; p = .017; ES= 0.74; CI95% [0.02, 2.64]), but not for females (1.2 ± 0.7% BM; p = .096; ES = 0.58; CI95% [-0.02, 2.31]). Differences in BM regain after weigh-in between winners and losers were significant across all fights (0.9 ± 0.3% BM; p = .0021; ES= 0.43; CI95% [0.31, 1.41]) but not for first round fights (0.8 ± 0.5% BM; p = .1386, ES = 0.38; CI95% [-0.26, 1.86]). Winners showed a greater regain in BM post weigh-in than losers. This may reflect the greater magnitude of the BM loss needed to achieve weigh-in targets which also relates to the experience level of successful athletes.

Restricted access

Katie J. Thralls, Jeanne F. Nichols, Michelle T. Barrack, Mark Kern and Mitchell J. Rauh

Early detection of the female athlete triad is essential for the long-term health of adolescent female athletes. The purpose of this study was to assess relationships between common anthropometric markers (ideal body weight [IBW] via the Hamwi formula, youth-percentile body mass index [BMI], adult BMI categories, and body fat percentage [BF%]) and triad components, (low energy availability [EA], measured by dietary restraint [DR], menstrual dysfunction [MD], low bone mineral density [BMD]). In the sample (n = 320) of adolescent female athletes (age 15.9± 1.2 y), Spearman’s rho correlations and multiple logistic regression analyses evaluated associations between anthropometric clinical cutoffs and triad components. All underweight categories for the anthropometric measures predicted greater likelihood of MD and low BMD. Athletes with an IBW ≤85% were nearly 4 times more likely to report MD (OR = 3.7, 95% CI [1.8, 7.9]) and had low BMD (OR = 4.1, 95% CI [1.2, 14.2]). Those in <5th percentile for their age-specific BMI were 9 times more likely to report MD (OR 9.1, 95% CI [1.8, 46.9]) and had low BMD than those in the 50th to 85th percentile. Athletes with a high BF% were almost 3 times more likely to report DR (OR = 2.8, 95% CI [1.4, 6.1]). Our study indicates that low age-adjusted BMI and low IBW may serve as evidence-based clinical indicators that may be practically evaluated in the field, predicting MD and low BMD in adolescents. These measures should be tested for their ability as tools to minimize the risk for the triad.