Search Results

You are looking at 1 - 10 of 57 items for :

  • "body-mass loss" x
  • Physical Education and Coaching x
Clear All
Restricted access

Heather M. Logan-Sprenger, George J. F. Heigenhauser, Graham L. Jones and Lawrence L. Spriet

This study investigated the effects of progressive mild dehydration during cycling on whole-body substrate oxidation and skeletal-muscle metabolism in recreationally active men. Subjects (N = 9) cycled for 120 min at ~65% peak oxygen uptake (VO2peak 22.7 °C, 32% relative humidity) with water to replace sweat losses (HYD) or without fluid (DEH). Blood samples were taken at rest and every 20 min, and muscle biopsies were taken at rest and at 40, 80, and 120 min of exercise. Subjects lost 0.8%, 1.8%, and 2.7% body mass (BM) after 40, 80, and 120 min of cycling in the DEH trial while sweat loss was not significantly different between trials. Heart rate was greater in the DEH trial from 60 to 120 min, and core temperature was greater from 75 to 120 min. Rating of perceived exertion was higher in the DEH trial from 30 to 120 min. There were no differences in VO2, respiratory-exchange ratio, total carbohydrate (CHO) oxidation (HYD 312 ± 9 vs. DEH 307 ± 10 g), or sweat rate between trials. Blood lactate was significantly greater in the DEH trial from 20 to 120 min with no difference in plasma free fatty acids or epinephrine. Glycogenolysis was significantly greater (24%) over the entire DEH vs. HYD trial (433 ± 44 vs. 349 ± 27 mmol · kg−1 · dm−1). In conclusion, dehydration of <2% BM elevated physiological parameters and perceived exertion, as well as muscle glycogenolysis, during exercise without affecting whole-body CHO oxidation.

Restricted access

Cyril Schmit, Rob Duffield, Christophe Hausswirth, Jeanick Brisswalter and Yann Le Meur

.7 (1.6) Abbreviations: BML, body-mass loss; C, control; HA-H, heat acclimation at high exercise intensity; HA-L, heat acclimation at low exercise intensity; HR, heart rate; max, maximum; RPE, rating of perceived exertion; T core , core temperature; TT, time trial; WU, warm-up; AU, arbitrary units. Note

Restricted access

Karen Soo and Geraldine Naughton

This study investigated the hydration profile of high-performance female cricket players competing at a national tournament. The profile comprised hydration monitoring (n = 18) and a questionnaire (n = 20). Our objectives were to 1) advance the understanding of fluid losses in cricket sessions across a tournament and 2) assess the hydration knowledge and practices in female cricket players. Body mass before and after each game inning was recorded in order to estimate sweat rate, sweat loss, and percentage body-mass loss. Comparisons were made between groups categorized according to level of activity during each inning. When sweat rates were estimated according to actual activity time, results were in the range of those in other female team sports but less than results from male cricket players. A range of knowledge of hydration issues was also observed. This study supports the need for individualized hydration recommendations and provides direction for further hydration education in women’s cricket.

Restricted access

Tammie R. Ebert, David T. Martin, Brian Stephens, Warren McDonald and Robert T. Withers

Purpose:

To quantify the fluid and food consumed during a men’s and women’s professional road-cycling tour.

Methods:

Eight men (age 25 ± 5 y, body mass ± 7.4 kg, and height 177.4 ± 4.5 cm) and 6 women (age 26 ± 4 y, body mass ± 5.6 kg, and height 170.4 ± 5.2 cm) of the Australian Institute of Sport Road Cycling squads participated in the study. The men competed in the 6-d Tour Down Under (Adelaide, Australia), and the women, in the 10-d Tour De L’Aude (Aude, France). Body mass was recorded before and immediately after the race. Cyclists recalled the number of water bottles and amount of food they had consumed.

Results:

Men and women recorded body-mass losses of ~2 kg (2.8% body mass) and 1.5 kg (2.6% body mass), respectively, per stage during the long road races. Men had an average fluid intake of 1.0 L/h, whereas women only consumed on average 0.4 L/h. In addition, men consumed CHO at the rate suggested by dietitians (average CHO intake of 48 g/h), but again the women failed to reach recommendations, with an average intake of ~21 g/h during a road stage.

Conclusions:

Men appeared to drink and eat during racing in accordance with current nutritional recommendations, but women failed to reach these guidelines. Both men and women finished their races with a body-mass loss of ~2.6% to 2.8%. Further research is required to determine the impact of this loss on road-cycling performance and thermoregulation.

Restricted access

Stephen A. Mears and Susan M. Shirreffs

Exercising in cold environments results in water losses, yet examination of resultant voluntary water intake has focused on warm conditions. The purpose of the study was to assess voluntary water intake during and following exercise in a cold compared with a warm environment. Ten healthy males (22 ± 2 years, 67.8 ± 7.0 kg, 1.77 ± 0.06 m, VO2peak 60.5 ± 8.9 ml·kg−1·min−1) completed two trials (7–8 days). In each trial subjects sat for 30 min before cycling at 70% VO2peak (162 ± 27W) for 60 min in 25.0 ± 0.1 °C, 50.8 ± 1.5% relative humidity (RH; warm) or 0.4 ± 1.0 °C, 68.8 ± 7.5% RH (cold). Subjects then sat for 120 min at 22.2 ± 1.2 °C, 50.5 ± 8.0% RH. Ad libitum drinking was allowed during the exercise and recovery periods. Urine volume, body mass, serum osmolality, and sensations of thirst were measured at baseline, postexercise and after 60 and 120 min of the recovery period. Sweat loss was greater in the warm trial (0.96 ± 0.18 l v 0.48 ± 0.15 l; p < .0001) but body mass losses over the trials were similar (1.15 ± 0.34% (cold) v 1.03 ± 0.26% (warm)). More water was consumed throughout the duration of the warm trial (0.81 ± 0.42 l v 0.50 ± 0.49 l; p = .001). Cumulative urine output was greater in the cold trial (0.81 ± 0.46 v 0.54 ± 0.31 l; p = .036). Postexercise serum osmolality was higher compared with baseline in the cold (292 ± 2 v 287 ± 3 mOsm.kg−1, p < .0001) and warm trials (288 ± 5 v 285 ± 4 mOsm·kg−1; p = .048). Thirst sensations were similar between trials (p > .05). Ad libitum water intake adjusted so that similar body mass losses occurred in both trials. In the cold there appeared to a blunted thirst response.

Restricted access

Ronald J. Maughan, Stuart J. Merson, Nick P. Broad and Susan M. Shirreffs

This study measured fluid balance during a 90-min preseason training session in the first team squad (24 players) of an English Premier League football team. Sweat loss was assessed from changes in body mass after correction for ingested fluids and urine passed. Sweat composition was measured by collection from patches attached to the skin at 4 sites. The weather was warm (24-29 °C), with moderate humidity (46–64%). The mean ± SD body mass loss over the training session was 1.10 ± 0.43 kg, equivalent to a level of dehydration of 1.37 ± 0.54% of the pre-training body mass. Mean fluid intake was 971 ± 303 ml. Estimated total mean sweat loss was 2033 ±413 ml. Mean sweat electrolyte concentrations (mmol/L) were: sodium,49± 12; potassium,6.0± 1.3;chloride, 43 ± 10. Total sweat sodium loss of 99 ± 24 mmol corresponds to a salt (sodium chloride) loss of 5.8 ± 1.4 g. Mean urine osmolality measured on pre-training samples provided by the players was 666 ±311 mosmol/kg (n=21). These data indicate that sweat losses of water and solute in football players in training can be substantial but vary greatly between players even with the same exercise and environmental conditions. Voluntary fluid intake also shows wide inter-individual variability and is generally insufficient to match fluid losses.

Restricted access

Ben Desbrow, Daniel Murray and Michael Leveritt

Purpose:

To investigate the effect of manipulating the alcohol and sodium content of beer on fluid restoration following exercise.

Method:

Seven male volunteers exercised on a cycle ergometer until 1.96 ± 0.25% body mass (mean± SD) was lost. Participants were then randomly allocated a different beer to consume on four separate occasions. Drinks included a low-alcohol beer (2.3% ABV; LightBeer), a low-alcohol beer with 25 mmol×L−1 of added sodium (LightBeer+25), a full-strength beer (4.8% ABV; Beer), or a full-strength beer with 25 mmol×L−1 of added sodium (Beer+25). Volumes consumed were equivalent to 150% of body mass loss during exercise and were consumed over a 1h period. Body mass and urine samples were obtained before and hourly for 4 hr after beverage consumption.

Results:

Significantly enhanced net fluid balance was achieved following the LightBeer+25 trial (–1.02 ± 0.35 kg) compared with the Beer (–1.59 ± 0.32 kg) and Beer+25 (–1.64 ± 0.28 kg) treatments. Accumulated urine output was significantly lower in the LightBeer+25 trial (1477 ± 485 ml) compared with the Beer+25 (2101 ± 482 ml) and Beer (2175 ± 372 ml) trials.

Conclusion:

A low alcohol beer with added sodium offers a potential compromise between a beverage with high social acceptance and one which avoids the exacerbated fluid losses observed when consuming full strength beer.

Restricted access

David J. Clayton, Gethin H. Evans and Lewis J. James

The purpose of this study was to examine the gastric emptying and rehydration effects of hypotonic and hypertonic glucose-electrolyte drinks after exercise-induced dehydration. Eight healthy males lost ~1.8% body mass by intermittent cycling and rehydrated (150% of body mass loss) with a hypotonic 2% (2% trial) or a hypertonic 10% (10% trial) glucose-electrolyte drink over 60 min. Blood and urine samples were taken at preexercise, postexercise, and 60, 120, 180, and 240 min postexercise. Gastric and test drink volume were determined 15, 30, 45, 60, 90, and 120 min postexercise. At the end of the gastric sampling period 0.3% (2% trial) and 42.1% (10% trial; p < .001) of the drinks remained in the stomach. Plasma volume was lower (p < .01) and serum osmolality was greater (p < .001) at 60 and 120 min during the 10% trial. At 240 min, 52% (2% trial) and 64% (10% trial; p < .001) of the drinks were retained. Net fluid balance was greater from 120 min during the 10% trial (p < .001). When net fluid balance was corrected for the volume of fluid in the stomach, it was greater at 60 and 120 min during the 2% trial (p < .001). These results suggest that the reduced urine output following ingestion of a hypertonic rehydration drink might be mediated by a slower rate of gastric emptying, but the slow gastric emptying of such solutions makes rehydration efficiency difficult to determine in the hours immediately after drinking, compromising the calculation of net fluid balance.

Restricted access

Ronald J. Maughan, Lisa A. Dargavel, Rachael Hares and Susan M. Shirreffs

This study investigated fluid and electrolyte balance in well-trained male and female swimmers during 2 training sessions. Participants were 17 nationally ranked swimmers measured during a period of intensive training. Sweat loss was assessed from changes in body mass after correction for fluid intake and urine collection. Sweat composition was measured from waterproof absorbent patches applied at 4 skin sites. Air and pool-water temperatures were 36 °C and 27.4 °C, respectively. Training lasted 105 min in each session. All measured variables were similar on the 2 testing days. Mean sweat-volume loss was 548 ± 243 ml, and mean sweat rate was 0.31 ± 0.1 L/hr. Mean fluid intake was 489 ± 270 ml. Mean body-mass loss was 0.10 ± 0.50 kg, equivalent to 0.1% ± 0.7% dehydration. Mean pretraining urine osmolality was 662 ± 222 mOsm/kg, which was negatively associated with both mean drink volume consumed (p = .044, r 2 = .244) and mean urine volume produced during training (p = .002, r 2 = .468). Mean sweat Na+, K+, and Cl concentrations (mmol/L) were 43 ± 14, 4 ± 1, and 31± 9, respectively; values were not different between males and females and were not different between days except for a marginal difference in K+ concentration. The average swimmer remained hydrated during the session, and calculated sweat rates were similar to those in previous aquatic studies.

Restricted access

Gethin H. Evans, Jennifer Miller, Sophie Whiteley and Lewis J. James

The purpose of this study was to examine the efficacy of water and a 50 mmol/L NaCl solution on postexercise rehydration when a standard meal was consumed during rehydration. Eight healthy participants took part in two experimental trials during which they lost 1.5 ± 0.4% of initial body mass via intermittent exercise in the heat. Participants then rehydrated over a 60-min period with water or a 50 mmol/L NaCl solution in a volume equivalent to 150% of their body mass loss during exercise. In addition, a standard meal was ingested during this time which was equivalent to 30% of participants predicted daily energy expenditure. Urine samples were collected before and after exercise and for 3 hr after rehydration. Cumulative urine volume (981 ± 458 ml and 577 ± 345 mL; p = .035) was greater, while percentage fluid retained (50 ± 20% and 70 ± 21%; p = .017) was lower during the water compared with the NaCl trial respectively. A high degree of variability in results was observed with one participant producing 28% more urine and others ranging from 18–83% reduction in urine output during the NaCl trial. The results of this study suggest that after exercise induced dehydration, the ingestion of a 50 mmol/L NaCl solution leads to greater fluid retention compared with water, even when a meal is consumed postexercise. Furthermore, ingestion of plain water may be effective for maintenance of fluid balance when food is consumed in the rehydration period.