Search Results

You are looking at 1 - 10 of 187 items for :

  • "calorimetry" x
Clear All
Restricted access

Karsten Koehler, Thomas Abel, Birgit Wallmann-Sperlich, Annika Dreuscher and Volker Anneken

Background:

Inactivity and overweight are major health concerns in children and adolescents with disabilities. Methods for the assessment of activity and energy expenditure may be affected negatively by the underlying disability, especially when motor function is impaired. The purpose of this study was to assess the validity of the SenseWear Armband in adolescents with cerebral palsy and hemiparesis.

Methods:

Ten volunteers (age: 13.4 ± 1.6 years) were equipped with SenseWear Armbands on the hemiparetic and nonhemiparetic side of the body. Energy expenditure was measured at rest and during treadmill exercise (speed range: 0.85 to 2.35 m/s). Indirect calorimetry served as independent reference method.

Results:

The mean error was between −0.6 and 0.8 kcal/min and there were no significant differences between SenseWear and indirect calorimetry at any speed. Differences between body sides in expenditure (mean: −0.2 to 0.0 kcal/min) and step count (mean: −3.4 to 9.7 steps/min) were not significant.

Conclusions:

The validity of the SenseWear Armband does not appear to be negatively affected by cerebral palsy during laboratory treadmill exercise. Future field studies are necessary to assess the validity and practicability of energy expenditure and physical activity assessment in children and adolescents with physical disabilities.

Open access

Christiana M.T. van Loo, Anthony D. Okely, Marijka Batterham, Tina Hinkley, Ulf Ekelund, Soren Brage, John J. Reilly, Gregory E. Peoples, Rachel Jones, Xanne Janssen and Dylan P. Cliff

Background:

To validate the activPAL3 algorithm for predicting metabolic equivalents (TAMETs) and classifying MVPA in 5- to 12-year-old children.

Methods:

Fifty-seven children (9.2 ± 2.3y, 49.1% boys) completed 14 activities including sedentary behaviors (SB), light (LPA) and moderate-to-vigorous physical activities (MVPA). Indirect calorimetry (IC) was used as the criterion measure. Analyses included equivalence testing, Bland-Altman procedures and area under the receiver operating curve (ROC-AUC).

Results:

At the group level, TAMETs were significantly equivalent to IC for handheld e-game, writing/coloring, and standing class activity (P < .05). Overall, TAMETs were overestimated for SB (7.9 ± 6.7%) and LPA (1.9 ± 20.2%) and underestimated for MVPA (27.7 ± 26.6%); however, classification accuracy of MVPA was good (ROC-AUC = 0.86). Limits of agreement were wide for all activities, indicating large individual error (SB: −27.6% to 44.7%; LPA: −47.1% to 51.0%; MVPA: −88.8% to 33.9%).

Conclusions:

TAMETs were accurate for some SB and standing, but were overestimated for overall SB and LPA, and underestimated for MVPA. Accuracy for classifying MVPA was, however, acceptable.

Restricted access

Keren Susan Cherian, Ashok Sainoji, Balakrishna Nagalla and Venkata Ramana Yagnambhatt

portable metabolic analyzer (Oxycon mobile; VIASYS Healthcare GmbH,  Höchberg, Germany) based on indirect calorimetry. As against a Douglas bag, it measures accurately, with a coefficient of variation of 2% to 7% across different metabolic work rates ( 52 ). It has been used as a criterion method in

Restricted access

Anne L. Adolph, Maurice R. Puyau, Firoz A. Vohra, Theresa A. Nicklas, Issa F. Zakeri and Nancy F. Butte

Purpose:

Given the unique physical activity (PA) patterns of preschoolers, wearable electronic devices for quantitative assessment of physical activity require validation in this population. Study objective was to validate uniaxial and triaxial accelerometers in preschoolers.

Methods:

Room calorimetry was performed over 3 hours in 64 preschoolers, wearing Actical, Actiheart, and RT3 accelerometers during play, slow, moderate, and fast translocation. Based on activity energy expenditure (AEE) and accelerometer counts, optimal thresholds for PA levels were determined by piecewise linear regression and discrimination boundary analysis.

Results:

Established HR cutoffs in preschoolers for sedentary/light, light/moderate and moderate/vigorous levels were used to define AEE (0.015, 0.054, 0.076 kcal·kg−1·min−1) and PA ratio (PAR; 1.6, 2.9, 3.6) thresholds, and accelerometer thresholds. True positive predictive rates were 77%, 75%, and 76% for sedentary; 63%, 61%, and 65% for light; 34%, 52%, and 49% for moderate; 46%, 46%, and 49% for vigorous levels. Due to low positive predictive rates, we combined moderate and vigorous PA. Classification accuracy was improved overall and for the combined moderate-to-vigorous PA level (69%, 82%, 79%) for Actical, Actiheart, and RT3, respectively.

Conclusion:

Uniaxial and triaxial accelerometers are acceptable devices with similar classification accuracy for sedentary, light, and moderate-to-vigorous levels of PA in preschoolers.

Restricted access

Emma L. J. Eyre, Jason Tallis, Susie Wilson, Lee Wilde, Liam Akhurst, Rildo Wanderleys and Michael J. Duncan

calorimetry, ActiGraph, and RT3 counts in older adults across different intensities ( Esliger et al., 2011 ). Additionally, the GENEActiv’s ability to determine sedentary behavior in adults (18–55 years) has been reported ( Pavey et al., 2016 ). Yet, the RT3 is not as extensively researched as other

Restricted access

David M. Wert, Jessie M. VanSwearingen, Subashan Perera and Jennifer S. Brach

The purpose of this study was to assess the relative and absolute reliability of metabolic measures of energy expenditure and gait speed during overground walking in older adults with mobility limitations. Thirty-three (mean age [SD] = 76.4 [6.6] years; 66% female) older adults with slow gait participated. Measures of energy expenditure and gait speed were recorded during two 6-min bouts of overground walking (1 week apart) at a self-selected “usual” walking pace. The relative reliability for all variables was excellent: ICC = .81−.91. Mean differences for five of the six outcome variables was less than or equal to the respected SEM, while all six mean differences fell below the calculated MDC95. Clinicians and researchers can be confident that metabolic measures of energy expenditure and gait speed in older adults with slow walking speeds can be reliably assessed during overground walking, providing an alternative to traditional treadmill assessments.

Restricted access

Sze Yen Tan, Marijka Batterham and Linda Tapsell

Background:

Knowing the total energy expenditure (TEE) of overweight adults is important for prescribing weight loss interventions. However, objective measurements of TEE may not always be readily available and can be expensive. This study aimed to investigate the validity of RT3 accelerometers in predicting the TEE of sedentary overweight adults, and to identify any sensitivity to anthropometric changes.

Methods:

The analysis used data from a 12-week weight loss study. At baseline and 12-week, TEE was predicted using RT3 accelerometers during whole room calorimeter stays. Bias between 2 methods was compared at and between the baseline and 12-week measurement points. Multiple regression analyses of TEE data were conducted.

Results:

Predicted and measured values for TEE were not different at baseline (P = .677) but were significantly different after weight loss (P = .007). However, the mean bias between methods was small (<100 kcal/d) and was not significantly different between 2 time-points. RT3 activity counts explained an additional 2% of the variation in TEE at 12-week but not at baseline.

Conclusion:

RT3 accelerometers are not sensitive to body composition changes and do not explain variation in TEE of overweight and obese individuals in a sedentary environment.

Restricted access

Cynthia A. Gillette, Richard C. Bullough and Christopher L. Melby

Postexercise energy metabolism was examined in male subjects age 22-35 years in response to three different treatments: a strenuous bout of resistive exercise (REx), a bout of stationary cycling (AEx) at 50% peak VO2, and a control condition (C) of quiet sitting. Resting metabolic rate (RMR) was measured the morning of and the morning following each condition. Recovery oxygen consumption (RcO2) was measured for 5 hr following each treatment. Total 5-hr RcO2 was higher for the REx treatment relative to both AEx and C, with the largest treatment differences occurring early during recovery. There were no large treatment differences in postexercise respiratory exchange ratio values, except for the first hour of recovery following REx. RMR measured 14.5 hr postexercise for the REx condition was significantly elevated compared to C. These results suggest that strenuous resistive exercise results in a greater excess postexercise oxygen consumption compared to steady-state endurance exercise of similar estimated energy cost.

Restricted access

Zachary C. Pope, Nan Zeng, Xianxiong Li, Wenfeng Liu and Zan Gao

specific models of the Fitbit and Jawbone despite the rising popularity of other smartwatches (e.g., Apple Watch). Moreover, few studies have employed indirect calorimetry as the criterion EE measure—an assessment method commonly considered the ‘gold standard’ for EE measurement ( Kenney, Wilmore

Restricted access

Gary J. Farkas, Marika A. Pitot and David R. Gater Jr.

variance ( Farkas & Gater, 2017 ). Therefore, increases or decreases in FFM can substantially affect TDEE, and following an SCI, RMR is considerably influenced ( Buchholz et al., 2003a ; Monroe et al., 1998 ). Direct, or whole body, calorimetry measures the amount of heat produced by a study participant