Search Results

You are looking at 1 - 10 of 58 items for :

  • "cross-country skiing" x
  • Physical Education and Coaching x
Clear All
Restricted access

Pål Haugnes, Jan Kocbach, Harri Luchsinger, Gertjan Ettema and Øyvind Sandbakk

speed in the uphill terrain, and logically follows the pattern found in previous research. 6 , 9 Table 3 Speed and Work Rate (in Absolute Values and Percentage of the Maximal Speed/Work Rate Achieved in the Same Section) for Representative Uphill and Flat Sections During 5-km Cross-Country Skiing With

Restricted access

Harri Luchsinger, Jan Kocbach, Gertjan Ettema and Øyvind Sandbakk

Biathlon is an Olympic winter sport, where 3 or 5 (0.8–4 km) laps of cross-country skiing using the skating technique is interspersed with 5-shot series of rifle shooting, alternating between the prone or standing position. One of the traditional racing formats is the individual distance

Restricted access

Guro Strøm Solli, Pål Haugnes, Jan Kocbach, Roland van den Tillaar, Per Øyvind Torvik and Øyvind Sandbakk

. Sandbakk Ø . Physiological and Biomechanical Aspects of Sprint Skiing . Trondheim, Norway : Human Movement Science, Norwegian University of Science and Technology ; 2011 . 13. Vesterinen V , Mikkola J , Nummela A , Hynynen E , Hakkinen K . Fatigue in a simulated cross-country skiing

Restricted access

Laurent Mourot, Nicolas Fabre, Erik Andersson, Sarah Willis, Martin Buchheit and Hans-Christer Holmberg

Postexercise heart-rate (HR) recovery (HRR) indices have been associated with running and cycling endurance-exercise performance. The current study was designed (1) to test whether such a relationship also exists in the case of cross-country skiing (XCS) and (2) to determine whether the magnitude of any such relationship is related to the intensity of exercise before obtaining HRR indices. Ten elite male cross-country skiers (mean ± SD; 28.2 ± 5.4 y, 181 ± 8 cm, 77.9 ± 9.4 kg, 69.5 ± 4.3 mL · min−1 · kg−1 maximal oxygen uptake [VO2max]) performed 2 sessions of roller-skiing on a treadmill: a 2 × 3-km time trial and the same 6-km at an imposed submaximal speed followed by a final 800-m time trial. VO2 and HR were monitored continuously, while HRR and blood lactate (BLa) were assessed during 2 min immediately after each 6-km and the 800-m time trial. The 6-km time-trial time was largely negatively correlated with VO2max and BLa. On the contrary, there was no clear correlation between the 800-m time-trial time and VO2, HR, or BLa. In addition, in no case was any clear correlation between any of the HRR indices and performance time or VO2max observed. These findings confirm that XCS performance is largely correlated with VO2max and the ability to tolerate high levels of BLa; however, postexercise HRR showed no clear association with performance. The homogeneity of the group of athletes involved and the contribution of the arms and upper body to the exercise preceding determination of HRR may explain this absence of a relationship.

Restricted access

Thomas Losnegard, Martin Andersen, Matt Spencer and Jostein Hallén

Purpose:

To investigate the effects of an active and a passive recovery protocol on physiological responses and performance between 2 heats in sprint cross-country skiing.

Methods:

Ten elite male skiers (22 ± 3 y, 184 ± 4 cm, 79 ± 7 kg) undertook 2 experimental test sessions that both consisted of 2 heats with 25 min between start of the first and second heats. The heats were conducted as an 800-m time trial (6°, >3.5 m/s, ~205 s) and included measurements of oxygen uptake (VO2) and accumulated oxygen deficit. The active recovery trial involved 2 min standing/walking, 16 min jogging (58% ± 5% of VO2peak), and 3 min standing/walking. The passive recovery trial involved 15 min sitting, 3 min walk/jog (~ 30% of VO2peak), and 3 min standing/walking. Blood lactate concentration and heart rate were monitored throughout the recovery periods.

Results:

The increased 800-m time between heat 1 and heat 2 was trivial after active recovery (effect size [ES] = 0.1, P = .64) and small after passive recovery (ES = 0.4, P = .14). The 1.2% ± 2.1% (mean ± 90% CL) difference between protocols was not significant (ES = 0.3, P = .3). In heat 2, peak and average VO2 was increased after the active recovery protocol.

Conclusions:

Neither passive recovery nor running at ~58% of VO2peak between 2 heats changed performance significantly.

Restricted access

Pål Haugnes, Per-Øyvind Torvik, Gertjan Ettema, Jan Kocbach and Øyvind Sandbakk

manifestations of localized muscular fatigue in humans . Crit Rev Biomed Eng . 1984 ; 11 ( 4 ): 251 – 279 . PubMed ID: 6391814 14. Zory R , Millet G , Schena F , Bortolan L , Rouard A . Fatigue induced by a cross-country skiing KO sprint . Med Sci Sports Exerc . 2006 ; 38 ( 12 ): 2144 – 2150

Restricted access

Øyvind Sandbakk and Hans-Christer Holmberg

Cross-country (XC) skiing has been an Olympic event since the first Winter Games in Chamonix, France, in 1924. Due to more effective training and tremendous improvements in equipment and track preparation, the speed of Olympic XC-ski races has increased more than that of any other Olympic endurance sport. Moreover, pursuit, mass-start, and sprint races have been introduced. Indeed, 10 of the 12 current Olympic competitions in XC skiing involve mass starts, in which tactics play a major role and the outcome is often decided in the final sprint. Accordingly, reappraisal of the success factors for performance in this context is required. The very high aerobic capacity (VO2max) of many of today’s world-class skiers is similar that of their predecessors. At the same time, the new events provide more opportunities to profit from anaerobic capacity, upper-body power, high-speed techniques, and “tactical flexibility.” The wide range of speeds and slopes involved in XC skiing requires skiers to continuously alternate between and adapt different subtechniques during a race. This technical complexity places a premium on efficiency. The relative amounts of endurance training performed at different levels of intensity have remained essentially constant during the past 4 decades. However, in preparation for the Sochi Olympics in 2014, XC skiers are performing more endurance training on roller skis on competition-specific terrain, placing greater focus on upper-body power and more systematically performing strength training and skiing at high speeds than previously.

Restricted access

Harri Luchsinger, Jan Kocbach, Gertjan Ettema and Øyvind Sandbakk

Biathlon is an Olympic sport combining cross-country skiing with the skating technique and rifle shooting. Biathletes carry a 3.5-kg-long rifle around the ski tracks and stop at the shooting range to perform 5 shots in the prone or standing position between the 2.5- to 5.0-km laps. In the biathlon

Restricted access

Nicolas Berryman, Iñigo Mujika, Denis Arvisais, Marie Roubeix, Carl Binet and Laurent Bosquet

described as a percentage of VO 2 max or maximal heart rate. 3 , 4 In recent years, however, convincing evidence has emerged indicating that strength training may also have a positive impact on middle- and long-distance performance (running, cycling, cross-country skiing) and its key determinants for

Restricted access

Conor M. Bolger, Jan Kocbach, Ann Magdalen Hegge and Øyvind Sandbakk

Purpose:

To compare the speed and heart-rate profiles during international skating and classical competitions in male and female world-class cross-country skiers.

Methods:

Four male and 5 female skiers performed individual time trials of 15 km (men) and 10 km (women) in the skating and classical techniques on 2 consecutive days. Races were performed on the same 5-km course. The course was mapped with GPS and a barometer to provide a valid course and elevation profile. Time, speed, and heart rate were determined for uphill, flat, and downhill terrains throughout the entire competition by wearing a GPS and a heart-rate monitor.

Results:

Times in uphill, flat, and downhill terrain were ~55%, 15–20%, and 25–30%, respectively, of the total race time for both techniques and genders. The average speed differences between skating and classical skiing were 9% and 11% for men and women, respectively, and these values were 12% and 15% for uphill, 8% and 13% for flat (all P < .05), and 2% and 1% for downhill terrain. The average speeds for men were 9% and 11% faster than for women in skating and classical, respectively, with corresponding numbers of 11% and 14% for uphill, 6% and 11% for flat, and 4% and 5% for downhill terrain (all P < .05). Heart-rate profiles were relatively independent of technique and gender.

Conclusions:

The greatest performance differences between the skating and classical techniques and between the 2 genders were found on uphill terrain. Therefore, these speed differences could not be explained by variations in exercise intensity.