Search Results

You are looking at 1 - 10 of 90 items for :

  • Physical Education and Coaching x
Clear All
Restricted access

Zekine Lappalainen, Jani Lappalainen, David E. Laaksonen, Niku K.J Oksala, Savita Khanna, Chandan K. Sen and Mustafa Atalay

Thioredoxin (TRX) is a protein disulfide reductase that plays an important role in many thiol-dependent cellular reductive processes, antioxidant protection, and signal transduction. Moreover, TRX reduces and maintains the function of many proteins during oxidative stress, which is increased in diabetes. The authors recently reported that diabetes impairs brain redox status and TRX response to exercise training. As a continuation of their studies, they hypothesized that alpha-lipoic acid, a natural thiol antioxidant, has a favorable effect on the brain TRX and glutathione (GSH) system in diabetes. Streptozotocin-induced diabetes was used as a chronic model and exhaustive exercise as an acute model for disrupted redox balance. Half the diabetic and nondiabetic animals were subjected to a bout of exhaustive exercise after 8 wk with or without lipoic acid and analyzed for key thiol antioxidants. Lipoic acid neither altered diabetes-induced oxidative stress as assessed by the increased ratio of oxidized to total GSH nor had any impact on the antioxidant protein response to exercise. However, lipoic acid increased mRNA of TRX-interacting protein, an inhibitor of TRX-1, and glutaredoxin-1 in diabetes. Exercise increased TRX-1 mRNA in both diabetic and nondiabetic animals but had no effect on TRX-1 protein. Cytosolic superoxide dismutase mRNA was only increased in diabetes, whereas exercise increased the protein levels in nondiabetic animals. The findings suggest that exhaustive exercise induces mRNA of TRX-1 in the brain and that lipoic acid cannot prevent diabetes-induced disturbances in GSH homeostasis. Because lipoic acid increased TRX-interacting protein transcription in diabetes, high doses may impair TRX-1 homeostasis.

Restricted access

Robert Kertzer, Ron Croce, Richard Hinkle and Collette Janson-Sand

Few studies have investigated the fitness levels of children and adolescents with insulin-dependent diabetes mellitus (IDDM), with no data presently available on such children’s level of motor proficiency. The present investigation was prompted by this lack of information. Twenty-one girls (mean age = 11.0 years, range = 7-14) and 23 boys (mean age =11.5 years, range = 8-15) with IDDM were tested on selected fitness and motor behavior parameters. Results indicated that children and adolescents with IDDM follow similar fitness and motor behavior profiles of their nondiabetic peers: Boys tended to be in better physical condition than girls of similar ages, particularly in the 12-15 year range. In the areas of body composition and abdominal strength/endurance, subjects displayed values below those obtained in studies of nondiabetic subjects. Subjects’ scores on the Bruininks-Oseretsky Test of Motor Proficiency for each age grouping were relatively high, indicating that children and adolescents with IDDM need not have diminished psychomotor skills.

Restricted access

Kian Peng Goh, Hwei Yee Lee, Dawn Pingxi Lau, Wilma Supaat, Yiong Huak Chan and Angela Fang Yung Koh

Objectives:

The primary aims of the study were to examine the effect of resveratrol on skeletal muscle SIRT1 expression and energy expenditure in subjects with Type 2 diabetes mellitus (T2DM).

Background:

Animal and in vivo studies indicate that resveratrol increases SIRT1 expression that stimulates PGC1α activity. Subsequent upregulation of AMPK and GLUT4 expression are associated with improved insulin sensitivity in peripheral tissues.

Methods:

Ten subjects with T2DM were randomized in a double-blind fashion to receive 3g resveratrol or placebo daily for 12 weeks. Secondary outcomes include measures of AMPK, p-AMPK and GLUT4 expression levels, energy expenditure, physical activity levels, distribution of abdominal adipose tissue and skeletal muscle fiber type composition, body weight, HbA1c, plasma lipid subfraction, adiponectin levels, and insulin sensitivity.

Results:

There was a significant increase in both SIRT1 expression (2.01 vs. 0.86 arbitrary units [AU], p = .016) and p-AMPK to AMPK expression ratio (2.04 vs. 0.79 AU, p = .032) in the resveratrol group compared with the placebo group. Although the percentage of absolute change (8.6 vs. –13.9%, p = .033) and percentage of predicted resting metabolic rate (RMR; 7.8 vs. –13.9%, p = .013) were increased following resveratrol, there was a significant reduction in average daily activity (–38 vs. 43.2%, p = .028) and step counts (–39.5 vs. 11.8%, p = .047) when compared with placebo.

Conclusions:

In patients with T2DM, treatment with resveratrol regulates energy expenditure through increased skeletal muscle SIRT1 and AMPK expression. These findings indicate that resveratrol may have beneficial exercise-mimetic effects in patients with T2DM.

Restricted access

Jean Gutierrez, Andrei Gribok, William Rumpler, Avinash Chandran and Loretta DiPietro

Background:

People with a family history of type 2 diabetes have lower energy expenditure (EE) and more obesity than those having no such family history. Resistance exercise (RE) may induce excess postexercise energy expenditure (EPEE) and reduce long-term risk for obesity in this susceptible group.

Purpose:

To determine the effect of RE on EPEE for 15 hr after a single exercise bout in healthy, untrained young men having a family history of type 2 diabetes.

Design:

Seven untrained men (23 ± 1.2 years, BMI 24 ± 1.1) completed a 48-hr protocol in a whole room calorimeter. The first day served as a control day, with a moderate 40-min RE bout occurring on the second day. Differences in postexercise EE were compared with matched periods from the control day for cumulative 15-min intervals (up to 150 min) and 15 hr after the RE bout was completed.

Results:

The most robust difference in EPEE between the experimental and control days was observed in the first 15-min postexercise period (M = 1.4Kcal/min; SD = 0.7; p < .05). No statistically significant differences in EPEE were noted beyond 90-min of continuous measurement.

Conclusions:

Young people with a family history of type 2 diabetes may not show EPEE after a single RE bout when observed for 15 hr after RE and long-term resistance training may be required to promote EPEE.

Restricted access

Hyun-Tae Kim

We investigated the effect of long-term treatment (6 wk) with selenium and vitamin E, in combination with aerobic exercise training, on malondialdehyde (MDA), oxidized low-density lipoprotein (ox-LDL), and glutathione peroxi-dase (GPx) in STZ-induced diabetic rats. The rats were assigned randomly to one of three treatment groups (n = 12 per group): 1) exercise group (EX), 2) selenium/vitamin E/exercise group (SVE), and 3) selenium/vitamin E group (SV). To estimate the acute effect of exercise, a 30-min endurance exercise was used. The MDA concentration was significantly lower in the SVE. The ox-LDL was significantly lower in the SVE and SV. The hepatic concentrations of selenium and vitamin E were significantly higher in the SVE. These results indicate that the increase in MDA is mildly attenuated in rats that were aerobically trained. Moreover, the joint administration of selenium and vitamin E with or without exercise training reduces the levels of ox-LDL.

Restricted access

Kyu-Jin Lee, Yun-A. Shin, Kyoung-Young Lee, Tae-Won Jun and Wook Song

The purpose of this study was to assess differences in the levels of plasma visfatin among female adolescents and changes in plasma visfatin and insulin resistance in obese female adolescents after 12 wk of aerobic exercise training. Twenty normal-weight female students (body-mass index [BMI] <22.9 kg/m2 and body fat ≤29.9) and 18 obese female students (BMI ≥25 kg/m2 and body fat ≥30%) participated in this study. Eleven obese students were assigned to an exercise group and completed a 12-wk aerobic exercise-training program that included four 40- to 50-min sessions per wk with an energy expenditure of 300–400 kcal/d. Seven obese students were assigned to a control group that received no exercise sessions or dietary restriction. The plasma visfatin levels of obese female adolescents were significantly higher (p < .05) than those of the normal-weight female adolescents. The plasma visfatin levels (294.00 ± 124.74 ng/ml to 185.55 ± 67.30 ng/ml, p < .01) and insulin resistance (p < .05) were significantly reduced after 12 wk of aerobic exercise. The results suggest that aerobic exercise resulting in an energy expenditure of 1,200–1,600 kcal/wk for 12 wk decreases plasma visfatin and insulin resistance in obese female adolescents.

Restricted access

Roy L.P.G. Jentjens and Asker E. Jeukendrup

Vanadium compounds have been shown to have insulin-like properties in rats and non-insulin-dependent diabetic humans. The purpose of the present study was to examine whether the effects of acute and short-term administration of vanadyl sulphate (VS) on insulin sensitivity also exist in healthy active individuals. Five male and 2 female participants (age: 24.9 ± 1.5 years; height: 176.1 ± 2.9 cm; body mass: 70.1 ± 2.9 kg) underwent 3 oral glucose tolerance tests (OGTT). The first OGTT was performed to obtain a baseline index of insulin sensitivity (ISI). On the night preceding the second OGTT, participants ingested 100 mg of VS, and the acute effects of VS on ISI were examined. For the next 6 days, participants were instructed to ingest 50 mg of VS twice daily, and a final OGTT was performed on day 7 to determine the short-term effects of VS on ISI. No differences were found in fasting plasma glucose and insulin concentrations after VS administration. Furthermore, ISI after 1 day and 7 days of VS administration was not different compared with baseline ISI (4.8±0.1 vs. 4.7±0.1 vs. 4.7 ± 0.1, respectively). These results demonstrate that there are no acute and short-term effects of VS administration on insulin sensitivity in healthy humans.

Restricted access

Xiaomin Sun, Zhen-Bo Cao, Kumpei Tanisawa, Satomi Oshima and Mitsuru Higuchi

et al., 2010 ). These studies suggest that altered vitamin D homeostasis may play a role in the development of insulin resistance and Type 2 diabetes mellitus (T2DM; Afzal et al., 2013 ; Song et al., 2013 ). Prior evidence has shown that circulating 25(OH)D concentrations are not only negatively

Restricted access

Angelika Wientzek, Anna Floegel, Sven Knüppel, Matthaeus Vigl, Dagmar Drogan, Jerzy Adamski, Tobias Pischon and Heiner Boeing

The aim of our study was to investigate the relationship between objectively measured physical activity (PA) and cardiorespiratory fitness (CRF) and serum metabolites measured by targeted metabolomics in a population- based study. A total of 100 subjects provided 2 fasting blood samples and engaged in a CRF and PA measurement at 2 visits 4 months apart. CRF was estimated from a step test, whereas physical activity energy expenditure (PAEE), time spent sedentary and time spend in vigorous activity were measured by a combined heart rate and movement sensor for a total of 8 days. Serum metabolite concentrations were determined by flow injection analysis tandem mass spectrometry (FIA-MS/MS). Linear mixed models were applied with multivariable adjustment and p-values were corrected for multiple testing. Furthermore, we explored the associations between CRF, PA and two metabolite factors that have previously been linked to risk of Type 2 diabetes. CRF was associated with two phosphatidylcholine clusters independently of all other exposures. Lysophosphatidylcholine C14:0 and methionine were significantly negatively associated with PAEE and sedentary time. CRF was positively associated with the Type 2 diabetes protective factor. Vigorous activity was positively associated with the Type 2 diabetes risk factor in the mutually adjusted model. Our results suggest that CRF and PA are associated with serum metabolites, especially CRF with phosphatidylcholines and with the Type 2 diabetes protective factor. PAEE and sedentary time were associated with methionine. The identified metabolites could be potential mediators of the protective effects of CRF and PA on chronic disease risk.