Search Results

You are looking at 1 - 10 of 64 items for :

  • Physical Education and Coaching x
  • All content x
Clear All
Restricted access

Judy L. Van Raalte, Lorraine Wilson, Allen Cornelius, and Britton W. Brewer

( Theodorakis et al., 2008 ). However, research that explores the effects of self-talk on effort, confidence, focus, and performance in adventure-sport contexts with high risk, such as self-contained underwater breathing apparatus (SCUBA) diving, is lacking. High-risk contexts such as those experienced in the

Restricted access

Jessica A. Calderbank, Paul Comfort, and John J. McMahon

takeoff from the blocks to the 15-m mark down the pool. The first 15 m of the race comprises a sequence of different stages which include the following: block time, dive distance (DD), dive time, angle of entry, depth achieved, distance/average velocity of the underwater phase, and total time to 15 m. 5

Restricted access

Kay Tetzlaff, Holger Schöppenthau, and Jochen D. Schipke

Context:

It has been widely believed that tissue nitrogen uptake from the lungs during breath-hold diving would be insufficient to cause decompression stress in humans. With competitive free diving, however, diving depths have been ever increasing over the past decades.

Methods:

A case is presented of a competitive free-diving athlete who suffered stroke-like symptoms after surfacing from his last dive of a series of 3 deep breath-hold dives. A literature and Web search was performed to screen for similar cases of subjects with serious neurological symptoms after deep breath-hold dives.

Case Details:

A previously healthy 31-y-old athlete experienced right-sided motor weakness and difficulty speaking immediately after surfacing from a breathhold dive to a depth of 100 m. He had performed 2 preceding breath-hold dives to that depth with surface intervals of only 15 min. The presentation of symptoms and neuroimaging findings supported a clinical diagnosis of stroke. Three more cases of neurological insults were retrieved by literature and Web search; in all cases the athletes presented with stroke-like symptoms after single breath-hold dives of depths exceeding 100 m. Two of these cases only had a short delay to recompression treatment and completely recovered from the insult.

Conclusions:

This report highlights the possibility of neurological insult, eg, stroke, due to cerebral arterial gas embolism as a consequence of decompression stress after deep breath-hold dives. Thus, stroke as a clinical presentation of cerebral arterial gas embolism should be considered another risk of extreme breath-hold diving.

Restricted access

Anna Melin, Monica Klungland Torstveit, Louise Burke, Saul Marks, and Jorunn Sundgot-Borgen

Disordered eating behavior (DE) and eating disorders (EDs) are of great concern because of their associations with physical and mental health risks and, in the case of athletes, impaired performance. The syndrome originally known as the Female Athlete Triad, which focused on the interaction of energy availability, reproductive function, and bone health in female athletes, has recently been expanded to recognize that Relative Energy Deficiency in Sport (RED-S) has a broader range of negative effects on body systems with functional impairments in both male and female athletes. Athletes in leanness-demanding sports have an increased risk for RED-S and for developing EDs/DE. Special risk factors in aquatic sports related to weight and body composition management include the wearing of skimpy and tight-fitting bathing suits, and in the case of diving and synchronized swimming, the involvement of subjective judgments of performance. The reported prevalence of DE and EDs in athletic populations, including athletes from aquatic sports, ranges from 18 to 45% in female athletes and from 0 to 28% in male athletes. To prevent EDs, aquatic athletes should practice healthy eating behavior at all periods of development pathway, and coaches and members of the athletes’ health care team should be able to recognize early symptoms indicating risk for energy deficiency, DE, and EDs. Coaches and leaders must accept that DE/EDs can be a problem in aquatic disciplines and that openness regarding this challenge is important.

Restricted access

Dan Benardot, Wes Zimmermann, Gregory R. Cox, and Saul Marks

Competitive diving involves grace, power, balance, and flexibility, which all require satisfying daily energy and nutrient needs. Divers are short, well-muscled, and lean, giving them a distinct biomechanical advantage. Although little diving-specific nutrition research on performance and health outcomes exists, there is concern that divers are excessively focused on body weight and composition, which may result in reduced dietary intake to achieve desired physique goals. This will result in low energy availability, which may have a negative impact on their power-to-weight ratio and health risks. Evidence is increasing that restrictive dietary practices leading to low energy availability also result in micronutrient deficiencies, premature fatigue, frequent injuries, and poor athletic performance. On the basis of daily training demands, estimated energy requirements for male and female divers are 3,500 kcal and 2,650 kcal, respectively. Divers should consume a diet that provides 3–8 g/kg/day of carbohydrate, with the higher values accommodating growth and development. Total daily protein intake (1.2–1.7 g/kg) should be spread evenly throughout the day in 20 to 30 g amounts and timed appropriately after training sessions. Divers should consume nutrient-dense foods and fluids and, with medical supervision, certain dietary supplements (i.e., calcium and iron) may be advisable. Although sweat loss during indoor training is relatively low, divers should follow appropriate fluid-intake strategies to accommodate anticipated sweat losses in hot and humid outdoor settings. A multidisciplinary sports medicine team should be integral to the daily training environment, and suitable foods and fluids should be made available during prolonged practices and competitions.

Restricted access

Carlo Minganti, Laura Capranica, Romain Meeusen, and Maria Francesca Piacentini

Purpose:

The aim of the present study was to assess the effectiveness of perceived exertion (session-RPE) in quantifying internal training load in divers.

Methods:

Six elite divers, three males (age, 25.7 ± 6.1 y; stature, 1.71 ± 0.06 m; body mass, 66.7 ± 1.2 kg) and three females (age, 25.3 ± 0.6 y; stature, 1.63 ± 0.05 m; body mass, 58.3 ± 4.0 kg) were monitored during six training sessions within a week, which included 1 m and 3 m springboard dives. The Edwards summated heart rate zone method was used as a reference measure; the session-RPE rating was obtained using the CR-10 Borg scale modified by Foster and the 100 mm visual analog scale (VAS).

Results:

Significant correlations were found between CR-10 and VAS session-RPE and the Edwards summated heart rate zone method for training sessions (r range: 0.71–0.96; R 2 range: 0.50–0.92; P < 0.01) and for divers (r range: 0.67–0.96; R 2 range: 0.44–0.92; P < 0.01).

Conclusions:

These findings suggest that session-RPE can be useful for monitoring internal training load in divers.

Restricted access

Mònica Solana-Tramunt, Jose Morales, Bernat Buscà, Marina Carbonell, and Lara Rodríguez-Zamora

50% of the routine time, 3 oxygen is mobilized from finite stores in the lungs, blood, and other tissues and the cardiovascular diving response restricts blood flow to selected regions and reduces heart rate (HR) and cardiac output. 3 Elite SS athletes perform 2 training sessions (TS) per day, and

Restricted access

Jeff Huber

Previous research has identified specific differences in cognition between experts and novices in problem-solving domains. To address the question of whether similar distinctions exist among springboard divers, six differences in problem representation and four differences in procedural knowledge were studied in elite and nonelite springboard divers. Subjects reported their thoughts immediately following dive performance. Verbal reports were converted into problem representations and production rules. Analysis of the representations and production rules revealed differences between elite and nonelite divers consistent with distinctions found between expert and novice problem-solvers. Elite problem representations contained more higher order concepts than nonelite representations. Moreover, the elite representations were more richly embedded, containing more concepts, features, and interrelations than the nonelite representations. Also, elite divers cited more production rules than nonelite divers. Elite production rules displayed a greater degree of sophistication in discrimination, proceduralization, composition, and strengthening.

Restricted access

Montse C. Ruiz, Yuri Hanin, and Claudio Robazza

In this investigation we describe an individualized approach in the assessment of athletes’ experiences associated with successful and poor performances. Two studies were conducted to develop a profiling procedure to assess eight modalities of performance-related states. In Study 1, six high-level athletes assessed their states before most successful and unsuccessful performances using a preliminary 71-item stimulus list developed by a panel of four emotion researchers. They also rated the intensity of their states on a modified Borg’s CR-10 scale. In Study 2, five top-level divers assessed their states before multiple dives (three successful and three unsuccessful) using a revised 74-item list. The perceived impact on performance was also examined using an open-ended question. Individual profiles reflected two typical curves discriminating successful and unsuccessful performances. High individual variability in item content and intensity was found. Athletes reported a wide range of interrelated experiences associated with their performances. Our findings support the practical utility of individualized profiling to assess athletes’ performance-related states.

Restricted access

Daniel Tan, Brian Dawson, and Peter Peeling

Purpose:

This study aimed to quantify the hemolytic responses of elite female football (soccer) players during a typical weekly training session.

Methods:

Ten elite female football players (7 field players [FPs] and 3 goalkeepers [GKs]) were recruited from the Australian National Women’s Premier League and asked to provide a venous blood sample 30 min before and at the immediate conclusion of a typical weekly training session. During this training session, the players’ movement patterns were monitored via a 5-Hz global positioning system. The blood samples collected during the training session were analyzed for iron status via serum ferritin (SF) analysis, and the hemolytic response to training, via serum free hemoglobin (Hb) and haptoglobin (Hp) measurement.

Results:

50% of the participants screened were found to have a compromised iron stores (SF <35 μg/L). Furthermore, the posttraining serum free Hb levels were significantly elevated (P = .011), and the serum Hp levels were significantly decreased (P = .005), with no significant differences recorded between the FPs and GKs. However, the overall distance covered and the movement speed were significantly greater in the FPs.

Conclusions:

The increases in free Hb and decreases in Hp levels provide evidence that a typical team-sport training session may result in significant hemolysis. This hemolysis may primarily be a result of running-based movements in FPs and/or the plyometric movements in GKs, such as diving and tackling.