Search Results

You are looking at 1 - 10 of 51 items for :

  • "inertial sensor" x
  • Sport and Exercise Science/Kinesiology x
Clear All
Restricted access

Ilaria Masci, Giuseppe Vannozzi, Nancy Getchell and Aurelio Cappozzo

Assessing movement skills is a fundamental issue in motor development. Current process-oriented assessments, such as developmental sequences, are based on subjective judgments; if paired with quantitative assessments, a better understanding of movement performance and developmental change could be obtained. Our purpose was to examine the use of inertial sensors to evaluate developmental differences in hopping over distance. Forty children executed the task wearing the inertial sensor and relevant time durations and 3D accelerations were obtained. Subjects were also categorized in different developmental levels according to the hopping developmental sequence. Results indicated that some time and kinematic parameters changed with some developmental levels, possibly as a function of anthropometry and previous motor experience. We concluded that, since inertial sensors were suitable in describing hopping performance and sensitive to developmental changes, this technology is promising as an in-field and user-independent motor development assessment tool.

Restricted access

Barry S. Mason, James M. Rhodes and Victoria L. Goosey-Tolfrey

The purpose of the current study was to determine the validity and reliability of an inertial sensor for assessing speed specific to athletes competing in the wheelchair court sports (basketball, rugby, and tennis). A wireless inertial sensor was attached to the axle of a sports wheelchair. Over two separate sessions, the sensor was tested across a range of treadmill speeds reflective of the court sports (1.0 to 6.0 m/s). At each test speed, ten 10-second trials were recorded and were compared with the treadmill (criterion). A further session explored the dynamic validity and reliability of the sensor during a sprinting task on a wheelchair ergometer compared with high-speed video (criterion). During session one, the sensor marginally overestimated speed, whereas during session two these speeds were underestimated slightly. However, systematic bias and absolute random errors never exceeded 0.058 m/s and 0.086 m/s, respectively, across both sessions. The sensor was also shown to be a reliable device with coefficients of variation (% CV) never exceeding 0.9 at any speed. During maximal sprinting, the sensor also provided a valid representation of the peak speeds reached (1.6% CV). Slight random errors in timing led to larger random errors in the detection of deceleration values. The results of this investigation have demonstrated that an inertial sensor developed for sports wheelchair applications provided a valid and reliable assessment of the speeds typically experienced by wheelchair athletes. As such, this device will be a valuable monitoring tool for assessing aspects of linear wheelchair performance.

Restricted access

Malachy P. McHugh, Tom Clifford, Will Abbott, Susan Y. Kwiecien, Ian J. Kremenic, Joseph J. DeVita and Glyn Howatson

can derive other biomechanical metrics describing the jump performance, such as force, power, velocity, and center-of-mass position. Force data derived from inertial sensors have been shown to agree well with simultaneously recorded force plate data. 16 However, although jump heights derived from

Restricted access

Lindsey Tulipani, Mark G. Boocock, Karen V. Lomond, Mahmoud El-Gohary, Duncan A. Reid and Sharon M. Henry

new to the field of PT is inertial sensors, which are emerging as a useful tool for monitoring multiple segments in all planes of motion simultaneously. 6 Initial investigations into inertial sensor accuracy for PT applications compared inertial sensor data with data collected from motion analysis

Restricted access

David Whiteside, Olivia Cant, Molly Connolly and Machar Reid

Context:

Quantifying external workload is fundamental to training prescription in sport. In tennis, global positioning data are imprecise and fail to capture hitting loads. The current gold standard (manual notation) is time intensive and often not possible given players’ heavy travel schedules.

Purpose:

To develop an automated stroke-classification system to help quantify hitting load in tennis.

Methods:

Nineteen athletes wore an inertial measurement unit (IMU) on their wrist during 66 video-recorded training sessions. Video footage was manually notated such that known shot type (serve, rally forehand, slice forehand, forehand volley, rally backhand, slice backhand, backhand volley, smash, or false positive) was associated with the corresponding IMU data for 28,582 shots. Six types of machine-learning models were then constructed to classify true shot type from the IMU signals.

Results:

Across 10-fold cross-validation, a cubic-kernel support vector machine classified binned shots (overhead, forehand, or backhand) with an accuracy of 97.4%. A second cubic-kernel support vector machine achieved 93.2% accuracy when classifying all 9 shot types.

Conclusions:

With a view to monitoring external load, the combination of miniature inertial sensors and machine learning offers a practical and automated method of quantifying shot counts and discriminating shot types in elite tennis players.

Restricted access

Caterina Pesce, Ilaria Masci, Rosalba Marchetti, Giuseppe Vannozzi and Mirko Schmidt

: 22089478 doi:10.1249/MSS.0b013e31823fb254 10.1249/MSS.0b013e31823fb254 Grimpampi , E. , Masci , I. , Pesce , C. , & Vannozzi , G. ( 2016 ). Quantitative assessment of developmental levels in overarm throwing using wearable inertial sensor technology . Journal of Sports Sciences, 34 , 1759

Restricted access

Reed D. Gurchiek, Hasthika S. Rupasinghe Arachchige Don, Lasanthi C. R. Pelawa Watagoda, Ryan S. McGinnis, Herman van Werkhoven, Alan R. Needle, Jeffrey M. McBride and Alan T. Arnholt

.1111/sms.12490 25996964 2. Setuain I , Lecumberri P , Ahtiainen JP , Mero AA , Häkkinen K , Izquierdo M . Sprint mechanics evaluation using inertial sensor-based technology: a laboratory validation study . Scand J Med Sci Sports . 2018 ; 28 ( 2 ): 463 – 472 . PubMed ID: 28685862 doi

Restricted access

Tsuyoshi Saida, Masayuki Kawada, Daijiro Kuroki, Yuki Nakai, Takasuke Miyazaki, Ryoji Kiyama and Yasuhiro Tsuneyoshi

. , Brunton , L.R. , Wylde , V. , Gooberman-Hill , R. , Heyligers , I.C. , . . . Grimm , B. ( 2016 ). Assessment of physical function following total hip arthroplasty: Inertial sensor based gait analysis is supplementary to patient-reported outcome measures . Clinical Biomechanics, 32, 171

Restricted access

Vincent Shieh, Ashwini Sansare, Minal Jain, Thomas Bulea, Martina Mancini and Cris Zampieri

eventually in clinical practice. Systems that combine wearable inertial sensors with the software to collect and automatically analyze various motor tasks may have particular use in clinical research and practice. One such system, which is commercially available, is the MobilityLab system (APDM, Inc

Restricted access

Rienk M.A. van der Slikke, Daan J.J. Bregman, Monique A.M. Berger, Annemarie M.H. de Witte and Dirk-Jan (H.) E.J. Veeger

on performance and to explore the relationship between match and best performance, a single outcome measure should be used in both conditions. A recently introduced method based on inertial sensors allows for objective performance estimations in both match and best conditions in a reliable and