Search Results

You are looking at 1 - 10 of 238 items for :

  • "injury risk" x
  • Sport and Exercise Science/Kinesiology x
Clear All
Restricted access

Billy T. Hulin, Tim J. Gabbett, Nathan J. Pickworth, Rich D. Johnston and David G. Jenkins

-intensity intermittent running ability and injury risk is not known in team-sport athletes. Wearable microtechnology enables practitioners to easily quantify external workloads of multiple players. 10 , 11 As a means of assessing changes in high-intensity running ability, regular monitoring of heart rate responses

Restricted access

Shelby A. Peel, Lauren E. Schroeder, Zachary A. Sievert and Joshua T. Weinhandl

time of injury. Several biomechanical risk factors have been identified as increasing the chance of a noncontact ACL injury to occur. Greater knee abduction angles and greater internal knee adduction moments (KAM) have been shown to be primary predictors of ACL injury risk, with KAM being dependent on

Restricted access

Nathaniel S. Nye, Drew S. Kafer, Cara Olsen, David H. Carnahan and Paul F. Crawford

cardiovascular risk. 25 , 26 Research is limited with regard to assessment and comparison of different anthropometric measures as predictors of injury risk. Few have attempted to make direct comparisons of different anthropometric measures to determine the most effective for estimating future risk for injury

Restricted access

Robert McCunn, Hugh H.K. Fullagar, Sean Williams, Travis J. Halseth, John A. Sampson and Andrew Murray

professional playing experience, highlighting the potential influence of this factor on injury risk. In addition to this challenge, American football is characterized by disparate playing positions and athlete somatotypes, 8 further complicating the issue of training program design. 9 Unsurprisingly, playing

Restricted access

Erich J. Petushek, Edward T. Cokely, Paul Ward and Gregory D. Myer

Instrument-based biomechanical movement analysis is an effective injury screening method but relies on expensive equipment and time-consuming analysis. Screening methods that rely on visual inspection and perceptual skill for prognosticating injury risk provide an alternative approach that can significantly reduce cost and time. However, substantial individual differences exist in skill when estimating injury risk performance via observation. The underlying perceptual-cognitive mechanisms of injury risk identification were explored to better understand the nature of this skill and provide a foundation for improving performance. Quantitative structural and process modeling of risk estimation indicated that superior performance was largely mediated by specific strategies and skills (e.g., irrelevant information reduction), and independent of domain-general cognitive abilities (e.g., mental rotation, general decision skill). These cognitive models suggest that injury prediction expertise (i.e., ACL-IQ) is a trainable skill, and provide a foundation for future research and applications in training, decision support, and ultimately clinical screening investigations.

Restricted access

Marcus J. Colby, Brian Dawson, Peter Peeling, Jarryd Heasman, Brent Rogalski, Michael K. Drew and Jordan Stares

Australian football (AF) is a physical game involving large running volumes, rapid directional changes, and high-velocity running efforts. Minimizing injury risk is a priority for sports medicine/science staff as injuries have a detrimental impact on team and individual success. 1 An increased

Restricted access

Klaus Schneider and Ronald F. Zernicke

With a validated mathematical model of the head-neck consisting of nine rigid bodies (skull, seven cervical vertebrae, and torso), we simulated head impacts to estimate the injury risk associated with soccer heading. Experimental data from head-linear accelerations during soccer heading were used to validate the nine-body head-neck model for short duration impact loading of the head. In the computer simulations, the mass ratios between head mass and impacting body mass, the velocity of the impacting body, and the impact elasticity were varied. Head-linear and angular accelerations were compared to standard head-injury tolerance levels, and the injury risk specifically related to soccer heading was estimated. Based on our choice of tolerance levels in general, our simulations showed that injury risk from angular head accelerations was greater than from linear head accelerations, and compared to frontal impacts, lateral impacts had greater angular and less linear head accelerations. During soccer heading, our simulations indicated an unacceptable injury risk caused by angular head accelerations for frontal and lateral impacts at relatively low impact velocities for children, and at medium range impact velocities for adults. For linear head accelerations, injury risk existed for frontal and lateral impacts at medium range to relatively larger impact velocities for children, while no injury risk was shown for adults throughout the entire velocity range. For injury prevention, we suggest that head-injury risk can be reduced most substantially by increasing the mass ratio between head and impacting body. In soccer with children, the mass of the impacting body has to be adjusted to the reduced head mass of a child, that is, it must be clearly communicated to parents, coaches, and youngsters to only use smaller soccer balls.

Restricted access

Christopher A. DiCesare, Scott Bonnette, Gregory D. Myer and Adam W. Kiefer

performance, quality of movement, or injury risk. To that end, dynamic unilateral and bilateral tasks, such as the single-limb drop landing ( Ali, Rouhi, & Robertson, 2013 ; Ford et al., 2006 ) and the drop vertical jump ( Hewett et al., 2005 ; Myer et al., 2010 ), respectively, have been used to identify

Restricted access

Matthew J. Cross, Sean Williams, Grant Trewartha, Simon P.T. Kemp and Keith A. Stokes

Purpose:

To explore the association between in-season training-load (TL) measures and injury risk in professional rugby union players.

Methods:

This was a 1-season prospective cohort study of 173 professional rugby union players from 4 English Premiership teams. TL (duration × session-RPE) and time-loss injuries were recorded for all players for all pitch- and gym-based sessions. Generalized estimating equations were used to model the association between in-season TL measures and injury in the subsequent week.

Results:

Injury risk increased linearly with 1-wk loads and week-to-week changes in loads, with a 2-SD increase in these variables (1245 AU and 1069 AU, respectively) associated with odds ratios of 1.68 (95% CI 1.05–2.68) and 1.58 (95% CI 0.98–2.54). When compared with the reference group (<3684 AU), a significant nonlinear effect was evident for 4-wk cumulative loads, with a likely beneficial reduction in injury risk associated with intermediate loads of 5932–8651 AU (OR 0.55, 95% CI 0.22–1.38) (this range equates to around 4 wk of average in-season TL) and a likely harmful effect evident for higher loads of >8651 AU (OR 1.39, 95% CI 0.98–1.98).

Conclusions:

Players had an increased risk of injury if they had high 1-wk cumulative loads (1245 AU) or large week-to-week changes in TL (1069 AU). In addition, a U-shaped relationship was observed for 4-wk cumulative loads, with an apparent increase in risk associated with higher loads (>8651 AU). These measures should therefore be monitored to inform injury-risk-reduction strategies.

Restricted access

Kristian M. O’Connor, Sarika K. Monteiro and Ian A. Hoelker

The purpose of this study was to compare the knee joint dynamics for males and females performing constrained cutting tasks to an unanticipated running and cutting maneuver. Sixteen male and 17 female recreational athletes were recruited to perform four cutting tasks; unanticipated run and cut (CUT), stride land and cut (SLC), far box-land and cut (FLC), and close box-land and cut (CLC). Three-dimensional knee joint kinematics and kinetics were recorded. Data were compared across gender and task with a 2 × 4 ANOVA (p < .05), and a factor analysis was performed to examine task relationships. There were significant group mean differences between the tasks and across genders. The factor analysis revealed high correlations between the three constrained tasks, but for variables typically associated with ACL injury risk there was a poor relationship to the CUT task. This was particularly true for the frontal plane variables. The constrained tasks were only moderately useful in predicting cutting mechanics.