Search Results

You are looking at 1 - 10 of 361 items for :

  • Physical Education and Coaching x
Clear All
Restricted access

Marian E. Kneer

The theory/practice gap in physical education instructional practices has been more or less assumed. Recent research employing data-based analysis has provided some insight about instructional procedures being used. There is little evidence about the existence, size, and reasons contributing to the perceived gap. Instructors N = (128) from 20 randomly selected Illinois secondary schools were interviewed via questionnaire to obtain evidence relative to the perceived gap in the use of instructional “theory.” Results indicate that an overall gap exists in the regular use of planning (40%), teaching approaches (64%), practice (31%), evaluation (40%), and teaching/learning environment procedures (18%). The reason most often given for not using recommended planning, practice, and evaluation procedures was an expressed belief that “it was not necessary” (42%). Recommended instructional practices were used significantly more often by teachers from large schools and by teachers with more inservice education. The amount of instructor teaching experience is significantly related to the use of selected instructional theory.

Restricted access

Fábio J. Lanferdini, Rodrigo R. Bini, Pedro Figueiredo, Fernando Diefenthaeler, Carlos B. Mota, Anton Arndt and Marco A. Vaz

Purpose:

To employ cluster analysis to assess if cyclists would opt for different strategies in terms of neuromuscular patterns when pedaling at the power output of their second ventilatory threshold (POVT2) compared with cycling at their maximal power output (POMAX).

Methods:

Twenty athletes performed an incremental cycling test to determine their power output (POMAX and POVT2; first session), and pedal forces, muscle activation, muscle–tendon unit length, and vastus lateralis architecture (fascicle length, pennation angle, and muscle thickness) were recorded (second session) in POMAX and POVT2. Athletes were assigned to 2 clusters based on the behavior of outcome variables at POVT2 and POMAX using cluster analysis.

Results:

Clusters 1 (n = 14) and 2 (n = 6) showed similar power output and oxygen uptake. Cluster 1 presented larger increases in pedal force and knee power than cluster 2, without differences for the index of effectiveness. Cluster 1 presented less variation in knee angle, muscle–tendon unit length, pennation angle, and tendon length than cluster 2. However, clusters 1 and 2 showed similar muscle thickness, fascicle length, and muscle activation. When cycling at POVT2 vs POMAX, cyclists could opt for keeping a constant knee power and pedal-force production, associated with an increase in tendon excursion and a constant fascicle length.

Conclusions:

Increases in power output lead to greater variations in knee angle, muscle–tendon unit length, tendon length, and pennation angle of vastus lateralis for a similar knee-extensor activation and smaller pedal-force changes in cyclists from cluster 2 than in cluster 1.

Restricted access

Liam Anderson, Graeme L. Close, Matt Konopinski, David Rydings, Jordan Milsom, Catherine Hambly, John Roger Speakman, Barry Drust and James P. Morton

sometimes only partly mobile or completely immobile at the knee joint ( Grant, 2013 ). This severely restricts the use of the muscle groups in the lower limbs and results in a period of muscle disuse. Under such circumstances, there is a progressive loss of fat-free mass (FFM; Wall et al., 2013 ), a

Restricted access

Marta D. Van Loan, Barbara Sutherland, Nicola M. Lowe, Judith R. Turnlund and Janet C. King

In this study we tested the effect of zinc (Zn) on muscle function in humans. After receiving 12 mg Zn/day for 17 days. 8 male subjects received 0.3 mg Zn/day tor either 33 or 41 days. Subjects were divided into two groups for repletion. Group A subjects received overnight infusions of 66 mg Zn on Days 1 and 10 and then were fed 12 mg Zn/day for another 16 days. Group B subjects were fed 12 mg Zn/day for 3 weeks. Peak force and total work capacity of the knee and shoulder extensor and flexor muscle groups were assessed using an isokinetic dynamometer at baseline, at two points during depletion, and at repletion. Plasma Zn declined significantly during depletion and remained below baseline levels after repletion. The peak force of the muscle groups tesied was not affected by acute Zn depletion: however, total work capacity for the knee extensor muscles and shoulder extensor and flexor muscles declined significantly. The data suggest that acute Zn depletion alters the total work capacity of skeletal muscle.

Restricted access

Zachary Legault, Nicholas Bagnall and Derek S. Kimmerly

The study aimed to examine the effects that L-glutamine supplementation has on quadriceps muscle strength and soreness ratings following eccentric exercise. It was hypothesized that glutamine ingestion would quicken the recovery rate of peak force production and decrease muscle soreness ratings over a 72-hr recovery period. Sixteen healthy participants (8♀/8♂; 22 ± 4 years) volunteered in a double-blind, randomized, placebo-controlled crossover study. Supplement conditions consisted of isoenergetic placebo (maltodextrin, 0.6 g·kg-1·day-1) and L-glutamine (0.3 g·kg-1·day-1 + 0.3 g·kg-1·day-1 maltodextrin) ingestion once per day over 72 hr. Knee extensor peak torque at 0°, 30°, and 180° per second and muscle soreness were measured before, immediately following, 24, 48, and 72 hr posteccentric exercise. Eccentric exercise consisted of 8 sets (10 repetitions/set) of unilateral knee extension at 125% maximum concentric force with 2-min rest intervals. L-glutamine resulted in greater relative peak torque at 180°/sec both immediately after (71 ± 8% vs. 66 ± 9%), and 72 hr (91 ± 8% vs. 86 ± 7%) postexercise (all, p < .01). In men, L-glutamine produced greater (p < .01) peak torques at 30°/sec postexercise. Men also produced greater normalized peak torques at 30°/sec (Nm/kg) in the L-glutamine condition than women (all, p < .05). In the entire sample, L-glutamine resulted in lower soreness ratings at 24 (2.8 ± 1.2 vs. 3.4 ± 1.2), 48 (2.6 ± 1.4 vs. 3.9 ± 1.2), and 72 (1.7 ± 1.2 vs. 2.9 ± 1.3) hr postexercise (p < .01). The L-glutamine supplementation resulted in faster recovery of peak torque and diminished muscle soreness following eccentric exercise. The effect of L-glutamine on muscle force recovery may be greater in men than women.

Restricted access

Paul Comfort, Paul. A. Jones, John J. McMahon and Robert Newton

The isometric midthigh pull (IMTP) has been used to monitor changes in force, maximum rate of force development (mRFD), and impulse, with performance in this task being associated with performance in athletic tasks. Numerous postures have been adopted in the literature, which may affect the kinetic variables during the task; therefore, the aim of this investigation was to determine whether different knee-joint angles (120°, 130°, 140°, and 150°) and hip-joint angles (125° and 145°), including the subjects preferred posture, affect force, mRFD, and impulse during the IMTP. Intraclass correlation coefficients demonstrated high within-session reliability (r ≥ .870, P < .001) for all kinetic variables determined in all postures, excluding impulse measures during the 130° knee-flexion, 125° hip-flexion posture, which showed a low to moderate reliability (r = .666–.739, P < .001), while between-sessions testing demonstrated high reliability (r > .819, P < .001) for all kinetic variables. There were no significant differences in peak force (P > .05, Cohen d = 0.037, power = .408), mRFD (P > .05, Cohen d = 0.037, power = .409), or impulse at 100 ms (P > .05, Cohen d = 0.056, power = .609), 200 ms (P > .05, Cohen d = 0.057, power = .624), or 300 ms (P > .05, Cohen d = 0.061, power = .656) across postures. Smallest detectable differences demonstrated that changes in performance of >1.3% in peak isometric force, >10.3% in mRFD, >5.3% in impulse at 100 ms, >4.4% in impulse at 200 ms, and >7.1% in impulse at 300 ms should be considered meaningful, irrespective of posture.

Restricted access

Martin Buchheit, Yannick Cholley, Mark Nagel and Nicholas Poulos

Purpose:

To examine the effect of body mass (BM) on eccentric knee-flexor strength using the Nordbord and offer simple guidelines to control for the effect of BM on knee-flexor strength.

Methods:

Data from 81 soccer players (U17, U19, U21, senior 4th French division, and professionals) and 41 Australian Football League (AFL) players were used for analysis. They all performed 1 set of 3 maximal repetitions of the bilateral Nordic hamstring exercise, with the greatest strength measure used for analysis. The main regression equation obtained from the overall sample was used to predict eccentric knee-flexor strength from a given BM (moderate TEE, 22%). Individual deviations from the BM-predicted score were used as a BM-free index of eccentric knee- flexor strength.

Results:

There was a large (r = .55, 90% confidence limits .42;.64) correlation between eccentric knee-flexor strength and BM. Heavier and older players (professionals, 4th French division, and AFL) outperformed their lighter and younger (U17–U21) counterparts, with the soccer professionals presenting the highest absolute strength. Professional soccer players were the only ones to show strength values likely slightly greater than those expected for their BM.

Conclusions:

Eccentric knee-flexor strength, as assessed with the Nordbord, is largely BM-dependent. To control for this effect, practitioners may compare actual test performances with the expected strength for a given BM, using the following predictive equation: Eccentric strength (N) = 4 × BM (kg) + 26.1. Professional soccer players with specific knee-flexor-training history and enhanced neuromuscular performance may show higher than expected values.

Restricted access

Chris Button, Stuart Moyle and Keith Davids

There has been no direct attempt to evaluate whether gait performed overground and on a treadmill is the same for lower limb amputees. A multiple case study approach was adopted to explore the degenerate movement behavior displayed by three male amputees. Participants walked overground at a self-selected preferred pace and when this speed was enforced on a treadmill (50 stride cycles per condition). The extremities of motion (i.e., maximum flexion) for the hip and knee joints differed between conditions (0.2–3.8°). For two participants, the temporal asymmetry of gait was reduced on the treadmill. Initial data suggest that research on amputees simulating overground walking on a treadmill might need to be interpreted with some caution.

Restricted access

Sandro R. Freitas, João R. Vaz, Paula M. Bruno, Maria João Valamatos, Ricardo J. Andrade and Pedro Mil-Homens

Static stretching with rest between repetitions is often performed to acutely increase joint flexibility.

Purpose:

To test the effects of the lack of resting between stretching repetitions and the minimal number of stretching repetitions required to change the maximal range of motion (ROM), maximal tolerated joint passive torque (MPT), and submaximal passive torque at a given angle (PT).

Methods:

Five static stretching repetitions with a 30-s rest-interval (RI) and a no-rest-interval (NRI) stretching protocol were compared. Participants (N = 47) were encouraged to perform the maximal ROM without pain in all the repetitions. Each repetition lasted 90 s. Maximal ROM, MPT, PT, and muscle activity were compared between protocols for the same number of stretching repetitions.

Results:

The NRI produced a higher increase in maximal ROM and MPT during and after stretching (P < .05). PT decreased in both protocols, although the NRI tended to have a lower decrement across different submaximal angles (.05 < P < .08) in the initial range of the torque-angle curve. Significant changes in maximal ROM (P < .01) and PT (P < .01) were obtained at the 3rd and 2nd repetitions of RI, respectively. The RI did not significantly increase the MPT (P = .12) after stretching; only the NRI did (P < .01).

Conclusions:

Lack of rest between repetitions more efficiently increased the maximal ROM and capacity to tolerate PT during and after stretching. The use of 30 s rest between repetitions potentiates the decrease in PT. Rest intervals should not be used if the aim is to acutely increase maximal ROM and peak passive torque.

Restricted access

William P. Ebben

Purpose:

The purpose of this study was to evaluate differences in hamstring activation during lower body resistance training exercises. This study also sought to assess differences in hamstring-to-quadriceps muscle activation ratios and gender differences therein.

Methods:

A randomized repeated measures design was used to compare six resistance training exercises that are commonly believed to train the hamstrings, including the squat, seated leg curl, stiff leg dead lift, single leg stiff leg dead lift, good morning, and Russian curl. Subjects included 34 college athletes. Outcome measures included the biceps femoris (H) and rectus femoris (Q) electromyography (EMG) and the H-to-Q EMG ratio, for each exercise.

Results:

Main effects were found for the H (P < 0.001) and Q (P < 0.001). Post hoc analysis identified the specific differences between exercises. In addition, main effects were found for the H-to-Q ratio when analyzed for all subjects (P < 0.001). Further analysis revealed that women achieved between 53.9 to 89.5% of the H-to-Q activation ratios of men, for the exercises assessed. In a separate analysis of strength matched women and men, women achieved between 35.9 to 76.0% of the H-to-Q ratios of men, for these exercises.

Conclusions:

Hamstring resistance training exercises offer differing degrees of H and Q activation and ratios. Women compared with men, are less able to activate the hamstrings and/or more able to activate the quadriceps. Women may require disproportionately greater training for the hamstrings compared with the quadriceps.