Search Results

You are looking at 1 - 10 of 169 items for :

  • "muscle damage" x
  • Physical Education and Coaching x
Clear All
Restricted access

Pedro Galoza, Felipe Sampaio-Jorge, Marco Machado, Ricardo Fonseca and Pierre A. V. Silva

Purpose:

To compare the effect of inter-set cooling and no cooling during resistance exercise (RE) on the total repetitions and select muscle damage biomarker responses.

Methods:

Sixteen healthy men volunteered to participate in this study and were randomly assigned to Cooling (n = 8) or Control (n = 8) groups. They performed a RE protocol consisting of four sets of biceps curl at 80% of 1RM. The cooling group received the application of wet bags of ice during each inter-set rest interval (Cooling), while the Control realized the same protocol without ice application. Exercise was performed to voluntary fatigue and the numbers of repetitions per set were recorded. Subjects provided blood samples before and at 24, 48, and 72 h following RE to evaluate serum CK activity and myoglobin concentration.

Results:

The Cooling group produced a greater number of repetitions (approx. 21%) than did the Control, but there were no differences in serum CK activity and myoglobin responses between the groups.

Conclusion:

Incorporating inter-set external cooling augments the number of repetitions per set during RE without inducing an additional muscle damage biomarker response.

Restricted access

William J. Evans

Most exercise results in some skeletal muscle damage. However, unaccustomed exercise andlor eccentric exercise can cause extensive damage. This exercise-induced muscle damage causes a response that can be characterized by a cascade of metabolic events. Within 24 to 48 hours, delayed onset muscle soreness and weakness, the most obvious manifestations of the damage, peak. Increased circulating neutrophils and interleukin-1 occurs within 24 hours after the exercise, with skeletal muscle levels remaining elevated for a much longer time. There is a prolonged increase in ultrastructural damage and muscle protein degradation as well as a depletion of muscle glycogen stores. These metabolic alterations may result in the increased need for dietary protein, particularly at the beginning of a training program that has a high eccentric component such as strength training. The delay in muscle repair and glycogen repletion following damaging exercise should cause coaches and athletes to allow an adequate period of time between competition for complete recovery.

Restricted access

Daniel H. Serravite, Arlette Perry, Kevin A. Jacobs, Jose A. Adams, Kysha Harriell and Joseph F. Signorile

Purpose:

To examine the effects of whole-body periodic acceleration (pGz) on exercise-induced-muscle-damage (EIMD) -related symptoms induced by unaccustomed eccentric arm exercise.

Methods:

Seventeen active young men (23.4 ± 4.6 y) made 6 visits to the research facility over a 2-wk period. On day 1, subjects performed a 1-repetition-maximum (1RM) elbowflexion test and were randomly assigned to the pGz (n = 8) or control group (n = 9). Criterion measurements were taken on day 2, before and immediately after performance of the eccentric-exercise protocol (10 sets, 10 repetitions using 120% 1RM) and after the recovery period. During subsequent sessions (24, 48, 72, and 96 h) these data were collected before pGz or passive recovery. Measurements included isometric strength (maximal voluntary contraction [MVC]), blood markers (creatine kinase, myoglobin, IL-6, TNF-α, TBARS, PGF2α, protein carbonyls, uric acid, and nitrites), soreness, pain, circumference, and range of motion (ROM).

Results:

Significantly higher MVC values were seen for pGz throughout the recovery period. Within-group differences were seen in myoglobin, IL-6, IL-10, protein carbonyls, soreness, pain, circumference, and ROM showing small negative responses and rapid recovery for the pGz condition.

Conclusion:

Our results demonstrate that pGz can be an effective tool for the reduction of EIMD and may contribute to the training-adaptation cycle by speeding up the recovery of the body due to its performance-loss-lessening effect.

Restricted access

Daniel Bok and Igor Jukić

Postmatch fatigue is caused by a combination of several factors including muscle damage 4 , 5 induced by executing numerous high-intensity eccentric muscle contractions. 6 Muscle damage after a soccer match can cause severe muscle soreness, and it can negatively influence athletic performance for several

Restricted access

Mathieu Lacome, Christopher Carling, Jean-Philippe Hager, Gerard Dine and Julien Piscione

combative and HS intermittent nature of the sport results in considerable muscle damage. 8 Research has demonstrated elevated blood creatine kinase concentrations [CK] b for 48 hours before returning to baseline levels at 70 hours postmatch. 9 These elevated concentrations are principally associated with

Restricted access

Mitchell Naughton, Joanna Miller and Gary J. Slater

league, rugby union, American football, and Australian rules football, which are further defined by physical contact interactions between athletes. Given the extreme physical demands of these sports, athletes are regularly exposed to skeletal muscle damage in response to stressors, such as high

Restricted access

David C. Nieman, Courtney L. Capps, Christopher R. Capps, Zack L. Shue and Jennifer E. McBride

participants ( Harms-Ringdahl et al., 2012 ). In a small study with nine anaerobic sport athletes and six controls, intake of 200 ml tomato juice for 2 months was linked to lower blood levels of muscle damage biomarkers including creatine kinase (CK) and lactate dehydrogenase ( Tsitsimpikou et al., 2013

Restricted access

John G. Seifert, Ronald W. Kipp, Markus Amann and Oladele Gazal

This study examined energy and fluid supplementation on indices of muscle damage during alpine skiing. Skiers were assigned to a carbohydrate-protein (CP), placebo (PL), or no fluid (NF) group. CP and PL ingested 1.62 L during and after skiing. Myoglobin did not change from pre-skiing (PS) to 2 h post-skiing (2PS) for CP (24.8 ± 1.4 and 25.6 ± 1.6 ng/mL), but rose significantly from 26.4 ± 1.3 to 40.0 ± 2.8 ng/mL for PL and from 29.0 ± 1.3 to 82.9 ± 3.6 ng/mL for NF. Creatine kinase was maintained from PRE to 2 PS for CP, but increased significantly from 117 ± 7.2 to 174 ± 43.4 U/L for PL and from 126 ± 23.2 to 243 ± 34.3 U/L for NF. This study demonstrates that ingestion of a CP beverage minimized muscle damage indices during skiing compared to PL and NF and that ingesting fluids may also minimize muscle damage compared to a NF condition.

Restricted access

Che-Hsiu Chen, Trevor C. Chen, Mei-Hwa Jan and Jiu-Jenq Lin

Objectives:

To examine whether an acute bout of active or dynamic hamstring-stretching exercises would reduce the amount of muscle damage observed after a strenuous eccentric task and to determine whether the stretching protocols elicit similar responses.

Design:

A randomized controlled clinical trial.

Methods:

Thirty-six young male students performed 5 min of jogging as a warm-up and were allocated to 1 of 3 groups: 3 min of static active stretching (SAS), 3 min of dynamic active stretching (DAS), or control (CON). All subjects performed eccentric exercise immediately after stretching. Heart rate, core temperature, maximal voluntary isometric contraction, passive hip flexion, passive hamstring stiffness (PHS), plasma creatine kinase activity, and myoglobin were recorded at prestretching, at poststretching, and every day after the eccentric exercises for 5 d.

Results:

After stretching, the change in hip flexion was significantly higher in the SAS (5°) and DAS (10.8°) groups than in the CON (–4.1°) group. The change in PHS was significantly higher in the DAS (5.6%) group than in the CON (–5.7%) and SAS (–6.7%) groups. Furthermore, changes in muscle-damage markers were smaller in the SAS group than in the DAS and CON groups.

Conclusions:

Prior active stretching could be useful for attenuating the symptoms of muscle damage after eccentric exercise. SAS is recommended over DAS as a stretching protocol in terms of strength, hamstring range of motion, and damage markers.

Restricted access

Kevin S. O’Fallon, Diksha Kaushik, Bozena Michniak-Kohn, C. Patrick Dunne, Edward J. Zambraski and Priscilla M. Clarkson

The flavonoid quercetin is purported to have potent antioxidant and anti-inflammatory properties. This study examined if quercetin supplementation attenuates indicators of exercise-induced muscle damage in a doubleblind laboratory study. Thirty healthy subjects were randomized to quercetin (QU) or placebo (PL) supplementation and performed 2 separate sessions of 24 eccentric contractions of the elbow flexors. Muscle strength, soreness, resting arm angle, upper arm swelling, serum creatine kinase (CK) activity, plasma quercetin (PQ), interleukin-6 (IL-6), and C-reactive protein (CRP) were assessed before and for 5 d after exercise. Subjects then ingested nutrition bars containing 1,000 mg/d QU or PL for 7 d before and 5 d after the second exercise session, using the opposite arm. PQ reached 202 ± 52 ng/ml after 7 d of supplementation and remained elevated during the 5-d postexercise recovery period (p < .05). Subjects experienced strength loss (peak = 47%), muscle soreness (peak = 39 ± 6 mm), reduced arm angle (–7° ± 1°), CK elevations (peak = 3,307 ± 1,481 U/L), and arm swelling (peak = 11 ± 2 mm; p < .0001), indicating muscle damage and inflammation; however, differences between treatments were not detected. Eccentric exercise did not alter plasma IL-6 (peak = 1.9 pg/ml) or CRP (peak = 1.6 mg/L) relative to baseline or by treatment. QU supplementation had no effect on markers of muscle damage or inflammation after eccentric exercise of the elbow flexors.