Search Results

You are looking at 1 - 10 of 129 items for :

  • "neurophysiology" x
  • Sport and Exercise Science/Kinesiology x
Clear All
Restricted access

M.A. Urbin

Goal-directed movement is possible because the cortical regions regulating movement have continuous access to visual information. Extensive research from the various domains of motor control (i.e., neurophysiology, neuropsychology, and psychophysics) has documented the extent to which the unremitting availability of visual information enables the sensorimotor system to facilitate online control of goal-directed limb movement. However, the control mechanism guiding appreciably more complex movements characterized by ballistic, whole-body coordination is not well understood. In the overarm throw, for example, joint rotations must be optimally timed between body segments to exploit the passive flow of kinetic energy and, in turn, maximize projectile speed while maintaining accuracy. The purpose of this review is to draw from the various research domains in motor control and speculate on the nature of the sensorimotor control mechanism facilitating overarm throwing performance.

Restricted access

Ina M. Tarkka, Pekka Hautasaari, Heidi Pesonen, Eini Niskanen, Mirva Rottensteiner, Jaakko Kaprio, Andrej M. Savić and Urho M. Kujala

adult owl monkeys after behaviorally controlled tactile stimulation . Journal of Neurophysiology . 1990 ; 63 ( 1 ): 82 . http://jn.physiology.org/cgi/content/abstract/63/1/82 2299388 10.1152/jn.1990.63.1.82 27. Erickson KI , Leckie RL , Weinstein AM . Physical activity, fitness, and gray

Restricted access

Andrew Hooyman, Alexander Garbin and Beth Fisher

transcranial magnetic stimulation in clinical practice and research . Clinical Neurophysiology, 120 ( 12 ), 2008 – 2039 . PubMed ID: 19833552 doi: 10.1016/j.clinph.2009.08.016 Rossini , P.M. , Burke , D. , Chen , R. , Cohen , L.G. , Daskalakis , Z. , Di Iorio , R. , . . . Ziemann , U

Restricted access

Joanne E. Folker, Bruce E. Murdoch, Louise M. Cahill, Kristin M. Rosen, Martin B. Delatycki, Louise A. Corben and Adam P. Vogel

Electropalatography (EPG) was used to describe the pattern of linguopalatal contact and the consonant phase durations exhibited by a group of seven individuals with dysarthria associated with Friedreich’s ataxia (FRDA). A group of 14 non-neurologically impaired individuals served as controls. The Reading Electropalatograph (EPG3) system was used to record linguopalatal contact during production of the target consonants (/t/, /l/, /s/, /k/) elicited in five words of CV and CVC construction, with the target consonants in word initial position. These words were embedded into short sentences and repeated five times by each participant. The FRDA group exhibited significantly increased consonant durations compared with the controls while maintaining normal linguopalatal contact patterns. These findings suggest that the articulatory impairment in FRDA manifests as a temporal rather than spatial disturbance.

Restricted access

Carly C. Sacco, Erin M. Gaffney and Jesse C. Dean

Applying white noise vibration to the ankle tendons has previously been used to improve passive movement detection and alter postural control, likely by enhancing proprioceptive feedback. The aim of the present study was to determine if similar methods focused on the ankle plantarflexors affect the performance of both quiet standing and an active postural positioning task, in which participants may be more reliant on proprioceptive feedback from actively contracting muscles. Twenty young, healthy participants performed quiet standing trials and active postural positioning trials designed to encourage reliance on plantarflexor proprioception. Performance under normal conditions with no vibration was compared to performance with 8 levels of vibration amplitude applied to the bilateral Achilles tendons. Vibration amplitude was set either as a percentage of sensory threshold (n = 10) or by root-mean-square (RMS) amplitude (n = 10). No vibration amplitude had a significant effect on quiet standing. In contrast, accuracy of the active postural positioning task was significantly (P = .001) improved by vibration with an RMS amplitude of 30 μm. Setting vibration amplitude based on sensory threshold did not significantly affect postural positioning accuracy. The present results demonstrate that appropriate amplitude tendon vibration may hold promise for enhancing the use of proprioceptive feedback during functional active movement.

Restricted access

Tessa Gordon, Esther Udina, Valerie M.K. Verge and Elena I. Posse de Chaves

Injured peripheral but not central nerves regenerate their axons but functional recovery is often poor. We demonstrate that prolonged periods of axon separation from targets and Schwann cell denervation eliminate regenerative capacity in the peripheral nervous system (PNS). A substantial delay of 4 weeks for all regenerating axons to cross a site of repair of sectioned nerve contributes to the long period of separation. Findings that 1h 20Hz bipolar electrical stimulation accelerates axon outgrowth across the repair site and the downstream reinnervation of denervated muscles in rats and human patients, provides a new and exciting method to improve functional recovery after nerve injuries. Drugs that elevate neuronal cAMP and activate PKA promote axon outgrowth in vivo and in vitro, mimicking the electrical stimulation effect. Rapid expression of neurotrophic factors and their receptors and then of growth associated proteins thereafter via cAMP, is the likely mechanism by which electrical stimulation accelerates axon outgrowth from the site of injury in both peripheral and central nervous systems.

Restricted access

Matt S. Stock and Brennan J. Thompson

We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.

Restricted access

Jacinto Javier Martínez-Payá, José Ríos-Díaz, María Elena del Baño-Aledo, David García-Martínez, Ana de Groot-Ferrando and Javier Meroño-Gallut

The objective of this observational cross-sectional study was to investigate the normal motion of the median nerve when stretched during a neurodynamic exercise. In recent years, ultrasonography has been increasingly accepted as an imaging technique for examining peripheral nerves in vivo, offering a reliable and noninvasive method for a precise evaluation of nerve movement. Transverse motion of the median nerve in the arm during a neurodynamic test was measured. A volunteer sample of 22 healthy subjects (11 women) participated in the study. Nerve displacement and deformation were assessed by dynamic ultrasonography. Excellent interobserver agreement was obtained, with kappa coefficient of .7–.8. Ultrasonography showed no lateral motion during wrist extension in 68% of nerves, while 73% moved dorsally, with statistically significant differences between sexes (ORlat = 6.3; 95% CI = 1.4–27.7 and ORdor = 8.3; 95% CI = 1.6–44.6). The cross-sectional area was significantly greater in men (3.6 mm2). Quantitative analysis revealed no other statistically significant differences. Our results provide evidence of substantial individual differences in median nerve transverse displacement in response to a neurodynamic exercise.